
Packaging and Delivering Software with the
Image Packaging System

A developer's guide

2019-05-22:14:55:52-UTC 17bc8e5a

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.
This document is provided for information purposes only and the
contents hereof are subject to change without notice. This document is
not warranted to be error-free, nor subject to any other warranties or
conditions, whether expressed orally or implied in law, including
implied warranties and conditions of merchantability or fitness for a
particular purpose. We specifically disclaim any liability with
respect to this document and no contractual obligations are formed
either directly or indirectly by this document. This document may not
be reproduced or transmitted in any form or by any means, electronic
or mechanical, for any purpose, without our prior written permission.
Oracle and Java are registered trademarks of Oracle and/or its
affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel
Corporation. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark licensed through X/Open Company, Ltd. 0611

1 Packaging and Delivering Software with the Image Packaging System

Preface
In OpenIndiana system software is packaged with the Image Packaging System, or IPS. IPS takes care of
installing new software and upgrading that software.

This manual is for developers and advanced administrators who want to better understand IPS, how to use it to
package their own software, and want to understand how OpenIndiana is packaged with IPS.

Special attention is given to the underlying design concepts and design patterns so that readers can more readily
understand and utilize the more advanced features of IPS.

Preface

2

How this book is organized
Chapter 1 - Design Goals and Concepts, outlines the basic design philosophy of IPS and its expression as
software patterns.

Chapter 2 - Package Lifecycle, provides an overview of the software package lifecycle with IPS.

Chapter 3 - Basic Terminology, lays out the basic terminology and describes the various components that form
IPS.

Chapter 4 - Packaging Software with IPS, gets the new user started constructing their own packages.

Chapter 5 - Installing, Removing, and Updating Software Packages, shows basic operation of pkg(1).

Chapter 6 - Specifying Dependencies, explains the different types of IPS dependencies and how they can be used
to construct working software systems.

Chapter 7 - Allowing Variations, explains how variants, facets and mediated links are used to allow software
publishers to define multiple installation forms for their packages.

Chapter 8 - Modifying Package Manifests Programmatically, explains how package manifests can be machine
edited to permit the automated annotation and checking of package manifests.

Chapter 9 - Causing System Change With SMF, explains how to use the Service Management Facility to
automatically handle any necessary system changes that should occur as a result of package installation.

Chapter 10, Advanced Update, deals with more complex package upgrade issues, and describes several features
in IPS designed to simplify these problems.

Chapter 11, Signing Packages, explains how package signing works and how developers and QA organizations
can sign either new or existing, already signed packages.

Chapter 12, Handling Non-Global Zones, describes how IPS handles zones and discusses those cases where
package developers should be aware of zones.

Chapter 13, How IPS Features Are Used When Packaging the OpenIndiana OS, describes how the packages for
the operating system are constructed and how the various dependency types in IPS are used to define working
package sets.

Chapter 14, Republishing Packages, describes how administrators can modify existing packages if needed for
local conditions.

Appendix A: Classifying Packages, contains info.classification scheme definitions.

Appendix B: Converting SVR4 packages to IPS, gives an example of converting an SVR4 package to IPS, and
highlights some areas that might need special attention.

How this book is organized

3 Packaging and Delivering Software with the Image Packaging System

#chapter-1
#chapter-2
#chapter-3
#chapter-4
#chapter-5
#chapter-6
#chapter-7
#chapter-8
#chapter-9
#chapter-10
#chapter-11
#chapter-12
#chapter-13
#chapter-14
#appendix-a
#appendix-b

Chapter 1

Design Goals and Concepts
This chapter discusses IPS design goals and concepts, and discusses some of the implications of those choices.

IPS is designed to eliminate some long-standing issues with previous software distribution, installation and
maintenance mechanisms that have caused significant problems for users, developers/maintainers and ISVs.

Principle IPS design concepts and goals include:

• Minimize planned downtime by making software update possible while machines are in production.

• Minimize unplanned downtime by supporting quick reboot to known working software configurations.

• Automate, as much as possible, the installation of new software or updates to existing software.

• Resolve the difficulties with ever-increasing software size and limited distribution media space.

• Ensure that it is possible to determine whether or not a package is correctly installed as defined by the author
(publisher) of the package; such a check should not be spoofable.

• Incorporate mechanisms to allow for the easy virtualization of OpenIndiana at a variety of levels - and zones in
particular.

• Reduce the effort required to generate patches/upgrades for existing systems.

• Allow other software publishers (ISVs and end-users themselves) to create and publish packages using IPS.

These goals led fairly directly to the following ideas:

• Leverage ZFS snapshot and clone facilities to dynamically create boot environments on an as-needed basis.

This means that:

• OpenIndiana requires ZFS as the root file system; zone file systems need to be on ZFS as well.

• Users can create as many boot environments as desired.

• The packaging system can automatically create boot environments on an as-needed basis, either for
backup purposes prior to modifying the running system, or for installation of a new version of the
OS.

• Eliminate duplicated mechanisms and code used to install, patch and update the operating system.

This results in several significant changes to the way the operating system is maintained. In particular:

• All OS software updates and patching are done directly with IPS.

• Any time a new package is installed, it is already exactly at the correct version.

• The requirement for unspoofable verification of package installation has interesting consequences:

• If a package needs to support installation in multiple ways, those ways must be specified by the
developer, so the verification process could take this into account.

• Scripting is inherently unverifiable since we cannot determine the intent of the script writer. This, along
with other issues mentioned later, led to the elimination of scripting during packaging operations.

• There can be no mechanism for the package to edit its own manifest, since verification is then impossible.

• If the administrator wants to install a package in a manner incompatible with the original publisher's
definition, we should enable the administrator to easily republish the package he wants to alter so that

Chapter 1

4

the scope of his changes are clear, not lost across upgrades, and can be verified in the same manner as the
original package.

• The need to avoid size restrictions led to a software repository model, accessed using several different methods.
Different repository sources can be composited to provide a complete set of packages, and repositories can be
distributed as a single file. In this manner, no single media is ever required to contain all the available software.
In order to support disconnected/firewalled operations, tools are provided to copy and merge repositories.

• The desire to enable multiple (possibly competing) software publishers led us to driving all the packaging
metadata into the packages themselves, so no master database of all packages, dependencies, etc. exists. A
catalog of available packages from a software publisher is part of the repository for performance reasons, but it
can be regenerated from the data contained in the packages at will.

Software Self-Assembly
Given the goals and ideas above, IPS introduces the general concept of software self-assembly: Any collection of
installed software on a system should be able to build itself into a working configuration when that system is booted,
by the time the packaging operation completes, or at software runtime.

Software self-assembly eliminates the need for install-time scripting in IPS. The software is responsible for its own
configuration rather than relying on the packaging system to perform that configuration on behalf of the software.
Software self-assembly also enables the packaging system to safely operate on alternate images, such as boot
environments that are not currently booted, or offline zone roots. In addition, since the self-assembly is performed
only on the running image, the package developer does not need to cope with cross-version or cross-architecture
run-time contexts.

There are obviously some aspects of preparing an operating system image that must be done before boot, and IPS
manages this transparently. These items include updating boot blocks, preparing a boot archive (ramdisk), and on
some architectures, managing the menu of boot choices.

Several idioms are employed to facilitate software self-assembly:

• Actions

Actions are the atomic units of software delivery in IPS. Each action delivers a single software object
- either a file system object, such as a file, directory or link, or a more complex software construct,
such as a user, group or driver. These more complex action types, previously handled by SVR4 class
action scripts no longer require scripting.

Actions, grouped together into packages, can be installed, updated and removed from both live
images as well as offline images.

While IPS allows for the set of known action types to be extended in the packaging system, during
development we have found that the action types delivered at present are sufficient for all packaged
software in OpenIndiana. It is not expected that package developers will need to create new action
types.

Actions are discussed in more detail in Chapter 3.

• Composition

Rather than maintaining complex configuration files, that require extensive scripting in order to
update each configuration file during packaging operations, IPS encourages package authors to
deliver fragments of the complete configuration file.

The packaged application either accesses those fragments directly when reading its configuration, or
the fragments can be assembled into the complete configuration file before reading it.

A good example of this is the /etc/user_attr configuration file, used by OpenIndiana to
configure extended attributes for roles and users on the system.

Software Self-Assembly

5 Packaging and Delivering Software with the Image Packaging System

#chapter-3

Special service svc:/system/rbac:default now can be used to regenerate
/etc/user_attr from the separate files delivered into the directory /etc/user_attr.d.
Multiple packages deliver fragments of the complete configuration. IPS action delivering these files
are marked with restart_fmri attribute wich causes service restart when these fragments are
installed, removed or updated. Now no additional scripting is required to update this file.

Obviously this requires that the software is written with composition in mind, which isn't always
possible.

• Actuators & SMF services

An actuator is a tag applied to any action delivered by the packaging system that causes a system
change when that action is installed, removed, or updated.

These changes are typically implemented as SMF services.

We can create SMF services that are responsible for configuring software directly, or constructing
configuration files using data delivered in the SMF manifest or sourced from files installed on the
system.

Since SMF services have a rich syntax to express dependencies, we can ensure that each service only
runs when all of its dependencies have been met.

Designing Your Package
Many of the good packaging criteria present trade-offs among themselves. It will often be difficult to satisfy all
requirements equally. These criteria are presented in order of importance; however, this sequence is meant to serve as
a flexible guide depending on the circumstances. Although each of these criteria is important, it is up to you to
optimize these requirements to produce a good set of packages.

Naming Your Package
OpenIndiana uses a hierarchical naming strategy for IPS packages. Wherever possible, design your package names to
fit into the same scheme. Try to keep the last part of your package name reasonably unique such that pkg install
<name> doesn't report conflicts.

Optimize for Client-Server Configurations
You should consider the various patterns of software use (client and server) when laying out packages. Good
packaging design divides the affected files to optimize installation of each configuration type. For example, for a
network protocol implementation, it should be possible to install the client without necessarily installing the server.
Note that if client and server share implementation components, a base package containing the shared bits is
necessary.

Package by Functional Boundaries
Packages should be self-contained and distinctly identified with a set of functionality. For example, a package
containing ZFS should contain all ZFS utilities and be limited to only ZFS binaries.

Packages should be organized from a customer's point of view into functional units.

Package Along License or Royalty Boundaries
Put code that requires royalty payments due to contractual agreements or that has distinct software license terms in a
dedicated package or group of packages. Do not disperse the code into more packages than necessary.

Designing Your Package

6

Overlap in Packages
Packages that overlap (deliver differing content to the same file system locations, for example) cannot be installed at
the same time. Since this error might not be caught until final planning for installation, it can provide a poor user
experience, though pkglint(1) can help to detect this during the package authoring process.

If the package content must differ, declare an exclude dependency so that IPS will understand that these packages are
not to be installed together.

Sizing Considerations
A package represents (modulo facets, discussed later) a single unit of software, and is either installed or not installed.
Packages that are always installed together should be combined. Since IPS downloads only changed files on update,
even large packages update quickly if change is limited.

Designing Your Package

7 Packaging and Delivering Software with the Image Packaging System

Chapter 2

Package Lifecycle
This chapter provides an overview of the software package lifecycle with IPS.

Software packages go through a detailed lifecycle with IPS. Understanding the various phases of the package
lifecycle will help the developer and administrator optimize their results. The following sections provide a high-level
description of each state in the package lifecycle:

Creation

Packages can be created by anybody. IPS does not impose any particular software build system or directory
hierarchy on the part of package authors. More detail about package creation is available in Chapter 4. Aspects
of package creation are discussed throughout the remaining chapters of this guide.

Publication

Packages are published to an IPS repository, either via HTTP or to the file system. If desired, once packages are
published they can converted to a .p5p package archive file. To access software from an IPS repository, the
repository can be added to the system, using the pkg set-publisher command, or accessed as a temporary
source, using the -g flag to pkg(1). Examples of package publication are shown in Chapter 4.

Installation

Packages can be installed on a system, either from an IPS repository, accessed over http://, https:// or file://
URLs, or installed directly from a .p5p package archive. Package installation is described in more detail in
Chapter 5.

Updates

Updated versions of packages might become available, either published to an IPS repository, or delivered as a
new .p5p package archive.

Installed packages can then be brought up to date, either individually, or as part of an entire system update.

It is important to note that IPS does not use the same concept of "patching" as the SVR4 packaging system did:
all changes to packaged software are delivered by updated packages.

The packaging system is optimized to install only the changed portions delivered by an updated package, but
essentially, package updates are performed in much the same way as package installs. Package updating is
described in more detail in Chapter 5.

Renaming

During a package's lifecycle, it might be desirable to rename a package. Often this is done for organizational
reasons or to refactor packages.

Examples of package refactoring would be where there is an interest in combining several packages into a single
package, breaking a single package into multiple smaller packages, or a combination of the two.

IPS gracefully handles actions that move between packages, and has capabilities to allow old package names to
persist on the system, automatically installing the new packages when a user asks to install a renamed package.
Package renaming is described in more detail in Chapter 10.

Chapter 2

8

#chapter-4
#chapter-4
http://
https://
file:///jenkins/jobs/oi-userland/workspace/components/openindiana/pkg/pkg/doc/dev-guide/
#chapter-5
#chapter-5
#chapter-10

Obsoletion

Eventually a package might reach the end of its life. A package publisher might decide that a package will no
longer be supported, and that it will not have any more updates made available. IPS allows publishers to mark
such packages as obsolete.

Obsolete packages can no longer be used as a target for most dependencies from other packages, and any
packages upgraded to an obsolete version are automatically removed from the system. Package obsoletion is
described in more detail in Chapter 10.

Removal

Finally, a package can be removed from the system assuming that no other packages have dependencies on it.
Package removal is described in more detail in Chapter 5.

Chapter 2

9 Packaging and Delivering Software with the Image Packaging System

#chapter-10
#chapter-5

Chapter 3

Basic Terminology
This chapter defines IPS terms and describes the IPS components.

Image
IPS is designed to install packages in an image. An image is a directory tree, and can be mounted in a variety of
locations as needed. Images are of three types:

Full

in a full image, all dependencies are resolved within the image itself and IPS maintains the dependencies in
a consistent manner;

Zone

in a zone image, IPS maintains the zone consistent with its global zone as defined by dependencies in the
packages;

User

not yet fully functional for OpenIndiana.

In general, images are created or cloned by other software (installers, beadm(1M), zonecfg(1M), etc) rather than
directly by the user.

Package
IPS deals with all software installed on a system in the granularity of packages. Every package is represented by a
fault management resource identifier (FMRI), consisting of a publisher, a name, and a version, with the scheme
‘pkg’. For example:

pkg://openindiana.org/system/library@0.5.11,5.11-2018.0.0.18233:20190417T022656Z

Here, ‘openindiana.org’ is the publisher, ‘system/library’ is the package name, and
‘0.5.11,5.11-2018.0.0.18233:20190417T022656Z’ is the version.

Package names are hierarchical with an arbitrary number of components separated by forward slash (‘/’) characters.
Package names form a single namespace across publishers; packages with the same name and version but different
publishers are assumed to be interchangeable in terms of external dependencies and interfaces. Package name
components are case sensitive and must start with a letter or number, but can include underscores (‘_’), dashes (‘-’),
periods (‘.’), and plus signs (‘+’) in later positions.

FMRIs can appear and can be referred to in abbreviated form. The scheme is typically unnecessary, leaving the
FMRI to start with either a double slash (‘//’) or a single slash (‘/’). When the first slash is doubled, the first word
following the slash is the publisher name. When there is only a single leading slash, no publisher name is present, and
the package name is considered complete, or ‘rooted’.

Further abbreviation is possible by eliding leading components of package names. For instance,
/driver/network/e1000g can be reduced to network/e1000g, or even simply e1000g. Note that such
abbreviation mighy cause the packaging client to complain about ambiguous package names, in which case
disambiguation can always be achieved by specifying the full, rooted name. Typically package names are chosen to
reduce possible ambiguities, even when referred to solely by their last component. Some trailing components are
common, however; in such cases, the last two components should be unambiguous. Scripts should generally refer to
packages by their full, rooted names.

Chapter 3

10

It is not possible to construct an abbreviated FMRI that contains a publisher name and only trailing package name
components.

The version is also often unnecessary; packages referred to without version will generally resolve to the latest version
of the package that can be installed. As explained below, versions themselves need not be complete.

FMRIs can also be referred to with patterns, where an asterisk (‘*’) can match any portion of a package name. Thus
/driver/*/e1000g will expand to /driver/network/e1000g, as will /dri*00g.

Version

A package version consists of four sequences of integer numbers, separated by punctuation. The elements in the first
three sequences are separated by dots, and the sequences are arbitrarily long. Leading zeros in version components
(e.g. ‘01.1’ or ‘1.01’) are forbidden, to allow for unambiguous sorting by package version.

An example version is:

0.5.11,5.11-2018.0.0.18233:20190417T022656Z

The first part is the component version. For components that are are provided by illumos-gate, this is the OS
major.minor version. For a component with its own development life cycle, this sequence is the dotted release
number, such as ‘2.4.10’.

The second part, which if present must follow a comma, is the build version. OpenIndiana uses this to denote the
release of the OS for which the package was compiled.

The third part, which if present must follow a dash, is the branch version, providing vendor-specific information. This
can be incremented when the packaging metadata is changed, independently of the component; can contain a build
number; or provide some other information.

The fourth part, which if present must follow a colon, is a timestamp. It represents when the package was published
in the GMT timezone, and is automatically updated when the package is published.

The package versions are ordered using left-to-right precedence; thus the timestamp is the least significant part of the
version space; the number immediately after the ‘@’ is the most significant.

If required, pkg.human-version can be used to hold a human-readable version string, however the versioning
scheme described above must also be present. The human-readable version string is only used for display purposes,
and is documented later in this chapter.

By allowing arbitrary version lengths, IPS can accommodate a variety of different models for supporting software.
Within the confines of a given component version, a package author can use the build or branch versions and assign
one portion of the versioning scheme to security updates, another for paid vs. unpaid support updates, another for
minor bug fixes, etc.

A version can also be the token ‘latest’, which is substituted for the latest version known.

We discuss how OpenIndiana implements versioning in Chapter 13.

Publisher
A publisher is an entity that develops and constructs packages. A publisher name, or prefix, is used to identify this
source in a unique manner. The use of Internet domains or registered trademarks is encouraged, since it provides a
natural namespace partitioning.

Package clients combine all specified sources of packages for a given publisher when computing packaging
solutions. Publisher names can include upper and lower case letters, numbers, dashes and periods; the same
characters as a valid hostname.

Chapter 3

11 Packaging and Delivering Software with the Image Packaging System

#chapter-13

Action
Actions are used to define the software that comprises a package; they define the data needed to create this software
component. When creating packages, the developer expresses the package contents as a set of actions then saves
those to a package manifest file.

Actions look like this:

action_name attribute1=value1 attribute2=value2 ...

As a concrete example:

dir path=a/b/c group=sys mode=0755 owner=root

The first field identifies this as a dir (or directory) action; the name=value attributes describe the familiar
properties of that directory. In the cases where the action has data associated with it, such as a file, the action looks
like this:

file 11dfc625cf4b266aaa9a77a73c23f5525220a0ef path=etc/release owner=root \
 group=sys mode=0444 chash=099953b6a315dc44f33bca742619c636cdac3ed6 \
 pkg.csize=139 pkg.size=189 variant.arch=i386

Here the second attribute (without a name= prefix), called the payload, is the SHA-1 hash of the file. This attribute
can alternatively appear as a regular attribute with the name hash; if both forms are present they must have the same
value.

Action metadata is freely extensible; additional attributes can be added to actions as desired. Attribute names cannot
include spaces, quotes, or equals signs (‘=’). Attribute values can have all of those, although values with spaces must
be enclosed in single or double quotes. Single quotes need not be escaped inside of a double-quoted string, and vice
versa, though a quote can be prefixed with a backslash (‘\’) so as not to terminate the quoted string. Backslashes can
be escaped with backslashes. It is recommended that custom attributes use a reverse domain name or similar unique
prefix to prevent accidental namespace overlap.

Multiple attributes with the same name can be present and are treated as unordered lists.

Note that manifests are largely created using programs; it is not expected that that developers produce complete
manifests by hand, but rather create skeletons with the minimal non-redundant information, and have the rest filled in
with tools such as pkgmogrify(1) and pkgdepend(1).

Most actions have key attributes; this attribute is what makes this action unique from all others in the image. For file
system objects, this is the path for that object.

Types of Actions
There are currently twelve action types in IPS. The following sections describe each action type, and the attributes
that define these actions. The action types are detailed in the pkg(5) man page, and are repeated here for reference.

Each section contains an example action, as it would appear in a manifest during package creation. Other attributes
might be automatically added to the action during publication.

File Actions

The file action is by far the most common action, and represents an ‘ordinary file’. The file action references
a payload, and has four standard attributes:

path

Chapter 3

12

The file system path where the file is installed. This is a file action's key attribute. These are relative to the
root of the image.

mode

The access permissions (in numeric form) of the file. These are simple permissions only, not ACLs.

owner

The name of the user that owns the file.

group

The name of the group that owns the file.

The payload is a positional attribute in that it is not named. It is the first word after the action name. In a
published manifest, it is the SHA-1 hash of the file contents. If present in a manifest that has yet to be published,
it represents the path where the payload can be found. See pkgsend(1). The hash attribute can be used
instead of the positional attribute, should the value include an equals sign. Both can be used in the same action.
However, the hashes must be identical.

Other attributes include:

preserve

This specifies that the file's contents should not be overwritten on upgrade if the contents are determined to
have changed since the file was installed or last upgraded. On initial installs, if an existing file is found, the
file is salvaged (stored in /var/pkg/lost+found).

• If the value of preserve is renameold, then the existing file is renamed with the extension
.old, and the new file is put in its place.

• If the value of preserve is renamenew, then the existing file is left alone, and the new file is
installed with the extension .new.

• If the value of preserve is legacy, then this file is not installed for initial package installs. On
upgrades, any existing file is renamed with the extension .legacy, and then the new file is put in its
place.

• If the value of preserve is true (or a value not listed above, such as strawberry), then the
existing file is left alone, and the new file is not installed. Other values with specific meanings might
be added in future, so using true should be used if this functionality is required.

overlay

This specifies whether the action allows other packages to deliver a file at the same location or whether it
delivers a file intended to overlay another. This functionality is intended for use with configuration files
that do not participate in any self-assembly (for example, /etc/motd) and that can be safely overwritten.

• If overlay is not specified, multiple packages cannot deliver files to the same location.

• If the value of overlay is allow, one other package is allowed to deliver a file to the same
location. This value has no effect unless the preserve attribute is also set.

• If the value of overlay is true, the file delivered by the action overwrites any other action that has
specified allow.

Changes to the installed file are preserved based on the value of the preserve attribute of the
overlaying file. On removal, the contents of the file are preserved if the action being overlaid is still
installed, regardless of whether the preserve attribute was specified. Only one action can overlay
another, and the mode, owner, and group attributes must match.

original_name

Chapter 3

13 Packaging and Delivering Software with the Image Packaging System

This attribute is used to handle editable files moving from package to package or from place to place, or
both. The form this takes is the name of the originating package, followed by a colon and the original path
to the file. Any file being deleted is recorded either with its package and path, or with the value of the
original_name attribute if specified. Any editable file being installed that has the original_name
attribute set uses the file of that name if it is deleted as part of the same packaging operation.

Note that once set, this attribute should never change even if the package or file are repeatedly renamed;
this will permit upgrade to occur from all previous versions.

revert-tag

This attribute is used to tag editable files that should be reverted as a set. Multiple revert-tag values
can be specified The file reverts to its manifest-defined state when pkg revert is invoked with any of
those tags specified. See pkg(1).

Specific types of file can have additional attributes. For ELF files, the following attributes are recognized:

elfarch

The architecture of the ELF file. This will is the output of uname -p on the architecture for which the file
is built.

elfbits

This is 32 or 64.

elfhash

This is the hash of the ‘interesting’ ELF sections in the file. These are the sections that are mapped into
memory when the binary is loaded.

These are the only sections necessary to consider when determining whether the executable behavior of
two binaries will differ.

An example file action is:

file path=usr/bin/pkg owner=root group=bin mode=0755

Directory Actions

The dir action is like the file action in that it represents a file system object, except that it represents a
directory instead of an ordinary file. The dir action has the same four standard attributes as the file action
(path, owner, group and mode), and path is the key attribute.

Directories are reference counted in IPS. When the last package that either explicitly or implicitly references a
directory no longer does so, that directory is removed. If that directory contains unpackaged file system objects,
those items are moved into /var/pkg/lost+found.

To move unpackaged contents into a new directory, the following attribute might be useful:

salvage-from

This names a directory of salvaged items. A directory with such an attribute inherits on creation the
salvaged directory contents if they exist.

During installation, pkg(1) will check that all instances of a given directory action on the system have the
same owner, group and mode attributes, and will not install the action if conflicting actions will exist on the
system as a result of the operation.

An example of a dir action is:

dir path=usr/share/lib owner=root group=sys mode=0755

Chapter 3

14

Link Actions

The link action represents a symbolic link. The link action has the following standard attributes:

path

The file system path where the symbolic link is installed. This is a link action's key attribute.

target

The target of the symbolic link. The file system object to which the link resolves.

The link action also takes attributes that allow for multiple versions or implementations of a given piece of
software to be installed on the system at the same time. Such links are mediated, and allow administrators to
easily toggle which links point to which version or implementation as desired. These mediated links are
discussed in Chapter 10.

An example of a link action is:

link path=usr/lib/libpython2.6.so target=libpython2.6.so.1.0

Hardlink Actions

The hardlink action represents a hard link. It has the same attributes as the link action, and path is also its
key attribute.

An example of a hardlink action is:

hardlink path=opt/myapplication/hardlink target=foo

Set Actions

The set action represents a package-level attribute, or metadata, such as the package description.

The following attributes are recognized:

name

The name of the attribute.

value

The value given to the attribute.

The set action can deliver any metadata the package author chooses. However, there are a number of
well-defined attribute names that have specific meaning to the packaging system.

pkg.fmri

The name and version of the containing package.

info.classification

One or more tokens that a pkg(5) client can use to classify the package. The value should have a scheme
(such as org.opensolaris.category.2008 or org.acm.class.1998) and the actual
classification, such as Applications/Games, separated by a colon (‘:’). The scheme is used by the
packagemanager(1) GUI. A set of info.classification values is included in Appendix A.

pkg.summary

A brief synopsis of the description. This is output with pkg list -s at the end of each line, as well as in
one line of the output of pkg info, so it should be no longer than sixty characters. It should describe
what a package is, and should refrain from repeating the name or version of the package.

pkg.description

Chapter 3

15 Packaging and Delivering Software with the Image Packaging System

#chapter-10
#appendix-a

A detailed description of the contents and functionality of the package, typically a paragraph or so in
length. It should describe why someone might want to install the package.

pkg.obsolete

When true, the package is marked obsolete. An obsolete package can have no actions other than more
set actions, and must not be marked renamed. Package obsoletion is covered in Chapter 10

pkg.renamed

When true, the package has been renamed. There must be one or more depend actions in the package as
well which point to the package versions to which this package has been renamed. A package cannot be
marked both renamed and obsolete, but otherwise can have any number of set actions. Package renaming
is covered in Chapter 10.

pkg.human-version

The version scheme used by IPS is strict, and does not allow for letters or words in the pkg.fmri version
field. If there is a commonly used human-readable version available for a given package, that can be set
here, and is displayed by IPS tools. It does not get used as a basis for version comparison and cannot be
used in place of the pkg.fmri version.

Some additional informational attributes, as well as some used by OpenIndiana are described in Chapter 13.

An example of a set action is:

set name=pkg.summary value="Image Packaging System"

Chapter 3

16

#chapter-10
#chapter-10
#chapter-13

Driver Actions

The driver action represents a device driver. The driver action does not reference a payload. The driver files
themselves must be installed as file actions. The following attributes are recognized (see add_drv(1M) for
more information):

name

The name of the driver. This is usually, but not always, the file name of the driver binary. This is the
driver action's key attribute.

alias

This represents an alias for the driver. A given driver can have more than one alias attribute. No special
quoting rules are necessary.

class

This represents a driver class. A given driver can have more than one class attribute.

perms

This represents the file system permissions for the driver's device nodes.

clone_perms

This represents the file system permissions for the clone driver's minor nodes for this driver.

policy

This specifies additional security policy for the device. A given driver can have more than one policy
attribute, but no minor device specification can be present in more than one attribute.

privs

This specifies privileges used by the driver. A given driver can have more than one privs attribute.

devlink

This specifies an entry in /etc/devlink.tab. The value is the exact line to go into the file, with tabs
denoted by ‘\t’. See devlinks(1M) for more information. A given driver can have more than one
devlink attribute.

An example of a driver action is:

driver name=vgatext \
 alias=pciclass,000100 \
 alias=pciclass,030000 \
 alias=pciclass,030001 \
 alias=pnpPNP,900 variant.arch=i386 variant.opensolaris.zone=global

Depend Actions

The depend action represents an inter-package dependency. A package can depend on another package
because the first requires functionality in the second for the functionality in the first to work, or even to install.
Dependencies are covered in more detail in Chapter 6.

The following attributes are recognized:

fmri

The FMRI representing the target of the dependency. This is the dependency action’s key attribute. The
FMRI value must not include the publisher. The package name is assumed to be complete (that is, rooted),
even if it does not begin with a forward slash (‘/’). Dependencies of type require-any can

Chapter 3

17 Packaging and Delivering Software with the Image Packaging System

#chapter-6

have multiple fmri attributes. A version is optional on the fmri value, though for some types of
dependencies, an FMRI with no version has no meaning.

The FMRI value cannot use asterisks, and cannot use the latest token for a version.

type

The type of the dependency.

• If the value is require, then the target package is required and must have a version equal to or
greater than the version specified in the fmri attribute. If the version is not specified, any version
satisfies the dependency. A package cannot be installed if any of its required dependencies cannot be
satisfied.

• If the value is optional, then the target, if present, must be at the specified version level or greater.

• If the value is exclude, then the containing package cannot be installed if the target is present at the
specified version level or greater. If no version is specified, the target package cannot be installed
concurrently with the package specifying the dependency.

• If the value is incorporate, then the dependency is optional, but the version of the target package
is constrained. See Chapter 6 for a discussion of constraints and freezing.

• If the value is require-any, then any one of multiple target packages as specified by multiple
fmri attributes can satisfy the dependency, following the same rules as the require dependency
type.

• If the value is conditional, the target is required only if the package defined by the predicate
attribute is present on the system.

• If the value is origin, the target must, if present, be at the specified value or better on the image to
be modified prior to installation. If the value of the root-image attribute is true, the target must
be present on the image rooted at ‘/’ in order to install this package.

• If the value is group, the target is required unless the package is on the image avoid list. Note that
obsolete packages silently satisfy the group dependency. See the avoid subcommand in the
pkg(1) man page.

• If the value is parent, then the dependency is ignored if the image is not a child image, such as a
zone. If the image is a child image then the target is required to be present in the parent image. The
version matching for a parent dependency is the same as that used for incorporate
dependencies.

predicate

The FMRI representing the predicate for conditional dependencies.

root-image

Has an effect only for origin dependencies as mentioned above.

An example of a depend action is:

depend fmri=crypto/ca-certificates type=require

License Actions

The license action represents a license or other informational file associated with the package contents. A
package can deliver licenses, disclaimers, or other guidance to the package installer through the use of the
license action.

Chapter 3

18

#chapter-6

The payload of the license action is delivered into the image metadata directory related to the package, and
should only contain human-readable text data. It should not contain HTML or any other form of markup.
Through attributes, license actions can indicate to clients that the related payload must be displayed and/or
require acceptance of it. The method of display and/or acceptance is at the discretion of clients.

The following attributes are recognized:

license

This attribute provides a meaningful description for the license to assist users in determining the contents
without reading the license text itself. Some example values include:

• ABC Co. Copyright Notice

• ABC Co. Custom License

• Common Development and Distribution License 1.0 (CDDL)

• GNU General Public License 2.0 (GPL)

• GNU General Public License 2.0 (GPL) Only

• MIT License

• Mozilla Public License 1.1 (MPL)

• Simplified BSD License

Wherever possible, including the version of the license in the description is recommended as shown above.
The license value must be unique within a package.

must-accept

When true, this license must be accepted by a user before the related package can be installed or updated.
Omission of this attribute is equivalent to false. The method of acceptance (interactive or
configuration-based, for example) is at the discretion of clients.

must-display

When true, the action's payload must be displayed by clients during packaging operations. Omission of
this value is considered equivalent to false. This attribute should not be used for copyright notices, only
actual licenses or other material that must be displayed during operations. The method of display is at the
discretion of clients.

The license attribute is the key attribute for the license action.

An example of a license action is:

license license="Apache v2.0"

Legacy Actions

The legacy action represents package data used by the legacy SVR4 packaging system. The attributes
associated with this action are added into the legacy system’s databases so that the tools querying those
databases can operate as if the legacy package were actually installed. In particular, this should be sufficient to
convince the legacy system that the package named by the pkg attribute is installed on the system, so that the
package can be used to satisfy SVR4 dependencies.

The following attributes, named in accordance with the parameters in pkginfo(4), are recognized:

category

The value for the CATEGORY parameter. The default value is system.
desc

Chapter 3

19 Packaging and Delivering Software with the Image Packaging System

The value for the DESC parameter.

hotline

The value for the HOTLINE parameter.

name

The value for the NAME parameter. The default value is ‘none provided’.

pkg

The abbreviation for the package being installed. The default value is the name from the FMRI of the
package.

vendor

The value for the VENDOR parameter.

version

The value for the VERSION parameter. The default value is the version from the FMRI of the package.

The pkg attribute is the key attribute for the legacy action.

An example of a legacy action is:

legacy pkg=SUNWcsu arch=i386 category=system \
 desc="core software for a specific instruction-set architecture" \
 hotline="Please contact your local service provider" \
 name="Core Solaris, (Usr)" vendor=illumos \
 version=11.11,REV=2009.11.11

Signature Actions

Signature actions are used as part of the support for package signing in IPS. They are covered in detail in
Chapter 11.

User Actions

The user action defines a UNIX user as defined in /etc/passwd, /etc/shadow, /etc/group, and
/etc/ftpd/ftpusers files. Users defined with this action have entries added to the appropriate files.

The following attributes are recognized:

username

The unique name of the user.

password

The encrypted password of the user. The default value is ‘*LK*’.

uid

The unique numeric ID of the user. The default value is the first free value under 100.

group

The name of the user's primary group. This must be found in /etc/group.

gcos-field

The real name of the user, as represented in the GECOS field in /etc/passwd. The default value is the
value of the username attribute.

home-dir

The user's home directory. The default value is ‘/’.

Chapter 3

20

#chapter-11

login-shell

The user's default shell. The default value is empty.

group-list

Secondary groups to which the user belongs. See group(4).

ftpuser

Can be set to true or false. The default value of true indicates that the user is permitted to login via
FTP. See ftpusers(4).

lastchg

The number of days between January 1, 1970, and the date that the password was last modified. The default
value is empty.

min

The minimum number of days required between password changes. This field must be set to 0 or above to
enable password aging. The default value is empty.

max

The maximum number of days the password is valid. The default value is empty. See shadow(4).

warn

The number of days before password expires that the user is warned.

inactive

The number of days of inactivity allowed for that user. This is counted on a per-machine basis. The
information about the last login is taken from the machine's lastlog file.

expire

An absolute date expressed as the number of days since the UNIX Epoch (January 1, 1970). When this
number is reached, the login can no longer be used. For example, an expire value of 13514 specifies a
login expiration of January 1, 2007.

flag

Set to empty.

For more information on the values of these attributes, see the shadow(4) man page.

A example of a user action is:

user gcos-field="pkg(5) server UID" group=pkg5srv uid=97 username=pkg5srv

Group Actions

The group action defines a UNIX group as defined in group(4). No support is present for group passwords.
Groups defined with this action initially have no user list. Users can be added with the user action. The
following attributes are recognized:

groupname

The value for the name of the group.

gid

The group's unique numeric id. The default value is the first free group under 100.

An example of a group action is:

group groupname=pkg5srv gid=97

Chapter 3

21 Packaging and Delivering Software with the Image Packaging System

Repository
A software repository contains packages for one or more publishers. Repositories can be configured for access in a
variety of different ways: HTTP, HTTPS, file (on local storage or via NFS or SMB) and as a self-contained package
archive file, usually with the .p5p extension.

Package archives allow for convenient distribution of IPS packages, and are discussed further in Chapter 4.

A repository accessed via HTTP or HTTPS has a server process (pkg.depotd(1M)) associated with it; in the case
of file repositories, the repository software runs as part of the accessing client.

Repositories are created with the pkgrepo(1) command, and package archives are created with the pkgrecv(1)
command.

Chapter 3

22

#chapter-4

Chapter 4

Packaging Software with IPS
This chapter describes how to package your software with IPS.

Packaging software with IPS is usually straightforward due to amount of automation that is provided. Automation
avoids repetitive tedium since that seems to be the principle cause of most packaging bugs.

Publication in IPS consists of the following steps:

1. Generate a package manifest.

2. Add necessary metadata to the generated manifest.

3. Evaluate dependencies.

4. Add any facets or actuators that are needed.

5. Verify the package.

6. Publish the package.

7. Test the package.

Each step is covered in the following sections.

Generate a Package Manifest
The easiest way to get started is to organize the component files into the same directory structure that you want on the
installed system.

This can be done with install target in Makefiles, or if the software you want to package is already in a tarball,
unpacking the tarball into a subdirectory. For many open source software packages that use autoconf(1), setting
the DESTDIR environment variable to point to the desired prototype area accomplishes this.

Suppose your software consists of a binary, a library and a man page, and you want to install this software in a
directory under /opt named mysoftware. You should create a directory (named proto in the examples) in your
build area under which your software appears; e.g:

proto/opt/mysoftware/lib/mylib.so.1
proto/opt/mysoftware/bin/mycmd
proto/opt/mysoftware/man/man1/mycmd.1

Now, let's generate a manifest for this proto area. We pipe it through pkgfmt(1) to format the manifest so that is
more readable. Assuming that the proto directory is in the current working directory:

$ pkgsend generate proto | pkgfmt > mypkg.p5m.1

Chapter 4

23 Packaging and Delivering Software with the Image Packaging System

Examining the file, you will see it contains the following lines:

dir path=opt group=bin mode=0755 owner=root
dir path=opt/mysoftware group=bin mode=0755 owner=root
dir path=opt/mysoftware/bin group=bin mode=0755 owner=root
dir path=opt/mysoftware/lib group=bin mode=0755 owner=root
dir path=opt/mysoftware/man group=bin mode=0755 owner=root
dir path=opt/mysoftware/man/man1 group=bin mode=0755 owner=root
file opt/mysoftware/bin/mycmd path=opt/mysoftware/bin/mycmd group=bin \
 mode=0755 owner=root
file opt/mysoftware/lib/mylib.so.1 path=opt/mysoftware/lib/mylib.so.1 \
 group=bin mode=0644 owner=root
file opt/mysoftware/man/man1/mycmd.1 path=opt/mysoftware/man/man1/mycmd.1 \
 group=bin mode=0644 owner=root

The path of the files to be packaged appears twice in the file action:

• The first word after the word ‘file’ describes the location of the file in the proto area.

• The path in the ‘path=’ attribute specifies the location where the file is to be installed.

This double entry enables you to modify the installation location without modifying the proto area. This capability
can save significant time, for example if you repackage software that was designed for installation on a different
operating system.

Also, note that pkgsend generate has applied defaults for directory owners and groups. In the case of /opt,
the defaults are not correct; we'll just delete that directory, since it's delivered by other packages already on the
system and pkg(1) would not install the package if the attributes of /opt conflicted with those already on the
system.

Add Necessary Metadata to the Generated Manifest
A package should define the following metadata. See also "Set Actions" in Chapter 3.

• pkg.fmri defines the name and version of the package as described in "Package" in Chapter 3. A description
of OpenIndiana versioning can be found in Chapter 13

• pkg.description is a description of the contents of the package.

• pkg.summary is a one-line synopsis of the description.

• variant.arch enumerates the architectures for which this package is suitable. If the entire package can be
installed on any architecture, this can be omitted. Producing packages that have different components for
different architectures is discussed in Chapter 7.

• info.classification is a grouping scheme used by packagemanager(1), the IPS GUI. The
supported values are shown in Appendix A. In this case, we pick an arbitrary one for our sample package.

In addition, we will add a link action to /usr/share/man/index.d pointing to our man directory, and discuss
this link when covering facets and actuators later in this chapter.

Rather than modifying the generated manifest directly, we'll use pkgmogrify(1) to edit the generated manifest. A
full description of how pkgmogrify(1) can be used to modify package manifests can be found in Chapter 8.

In this example the macro capability is used to define the architecture, as well as regular expression matching for the
directory to elide from the manifest.

Chapter 4

24

#chapter-3
#chapter-3
#chapter-13
#chapter-7
#appendix-a
#chapter-8

Now we create a small file containing the information we want to add to the manifest, as well as the transform needed
to drop the opt directory from the manifest:

set name=pkg.fmri value=mypkg@1.0,5.11-0
set name=pkg.summary value="This is our example package"
set name=pkg.description value="This is a full description of \
all the interesting attributes of this example package."
set name=variant.arch value=$(ARCH)
set name=info.classification \
 value=org.opensolaris.category.2008:Applications/Accessories
link path=usr/share/man/index.d/mysoftware target=opt/mysoftware/man
<transform dir path=opt$->drop>

Running pkgmogrify(1) over mypkg.p5m.1 with the above lines in a file named mypkg.mog:

$ pkgmogrify -DARCH=`uname -p` mypkg.p5m.1 mypkg.mog | pkgfmt > mypkg.p5m.2

Examining the file we see:

set name=pkg.fmri value=mypkg@1.0,5.11-0
set name=pkg.description \
 value="This is a full description of all the interesting attributes of this example package. "
set name=pkg.summary value="This is our example package"
set name=info.classification \
 value=org.opensolaris.category.2008:Applications/Accessories
set name=variant.arch value=i386
link path=usr/share/man/index.d/mysoftware target=opt/mysoftware/man
dir path=opt/mysoftware group=bin mode=0755 owner=root
dir path=opt/mysoftware/bin group=bin mode=0755 owner=root
dir path=opt/mysoftware/lib group=bin mode=0755 owner=root
dir path=opt/mysoftware/man group=bin mode=0755 owner=root
dir path=opt/mysoftware/man/man1 group=bin mode=0755 owner=root
file opt/mysoftware/bin/mycmd path=opt/mysoftware/bin/mycmd group=bin \
 mode=0755 owner=root
file opt/mysoftware/lib/mylib.so.1 path=opt/mysoftware/lib/mylib.so.1 \
 group=bin mode=0644 owner=root
file opt/mysoftware/man/man1/mycmd.1 path=opt/mysoftware/man/man1/mycmd.1 \
 group=bin mode=0644 owner=root
link path=usr/share/man/index.d/mysoftware target=../../../../opt/mysoftware/man

Note that the directory action defining opt has been removed, and the manifest contents from mypkg.mog have
been added to our package.

Evaluate Dependencies
Use the pkgdepend(1) command to automatically generate dependencies for the package. The generated depend
actions are defined in Chapter 3 and discussed further in Chapter 6.

Dependency generation is composed of two separate steps:

1. Determine the files on which our software depends.

2. Determine the packages that contain those files.

These steps are referred to as dependency generation and dependency resolution and are performed using the
generate and resolve subcommands of pkgdepend(1), respectively.

Chapter 4

25 Packaging and Delivering Software with the Image Packaging System

#chapter-3
#chapter-6

First, we'll generate our dependencies:

$ pkgdepend generate -md proto mypkg.p5m.2 | pkgfmt > mypkg.p5m.3

The -m option causes pkgdepend(1) to include the entire manifest in its output, and the -d option passes the
proto directory to the command.

In this new file, we see:

set name=pkg.fmri value=mypkg@1.0,5.11-0
set name=pkg.description \
 value="This is a full description of all the interesting attributes of this example package."
set name=pkg.summary value="This is our example package"
set name=info.classification \
 value=org.opensolaris.category.2008:Applications/Accessories
set name=variant.arch value=i386
dir path=opt/mysoftware group=bin mode=0755 owner=root
dir path=opt/mysoftware/bin group=bin mode=0755 owner=root
dir path=opt/mysoftware/lib group=bin mode=0755 owner=root
dir path=opt/mysoftware/man group=bin mode=0755 owner=root
dir path=opt/mysoftware/man/man1 group=bin mode=0755 owner=root
file opt/mysoftware/bin/mycmd path=opt/mysoftware/bin/mycmd group=bin \
 mode=0755 owner=root
file opt/mysoftware/lib/mylib.so.1 path=opt/mysoftware/lib/mylib.so.1 \
 group=bin mode=0644 owner=root
file opt/mysoftware/man/man1/mycmd.1 path=opt/mysoftware/man/man1/mycmd.1 \
 group=bin mode=0644 owner=root
link path=usr/share/man/index.d/mysoftware target=../../../../opt/mysoftware/man
depend fmri=__TBD pkg.debug.depend.file=libc.so.1 \
 pkg.debug.depend.reason=opt/mysoftware/bin/mycmd \
 pkg.debug.depend.type=elf type=require pkg.debug.depend.path=lib \
 pkg.debug.depend.path=opt/mysoftware/lib pkg.debug.depend.path=usr/lib
depend fmri=__TBD pkg.debug.depend.file=libc.so.1 \
 pkg.debug.depend.reason=opt/mysoftware/lib/mylib.so.1 \
 pkg.debug.depend.type=elf type=require pkg.debug.depend.path=lib \
 pkg.debug.depend.path=usr/lib

pkgdepend(1) has added notations about a dependency on libc.so.1 by both mylib.so.1 and mycmd.
Note that the internal dependency between mycmd and mylib.so.1 is currently silently elided by
pkgdepend(1).

Now we need to resolve these dependencies. To resolve dependencies, pkgdepend(1) examines the packages
currently installed on the machine used for building the software. By default, pkgdepend(1) puts its output in
mypkg.p5m.3.res. Note that this takes a while to run as it loads lots of information about the system on which it
is running. pkgdepend(1) will resolve many packages at once if you want to amortize this time over all packages;
running it on one package at a time is not time efficient.

$ pkgdepend resolve -m mypkg.p5m.3

Chapter 4

26

When this completes, mypkg.p5m.3.res contains:

set name=pkg.fmri value=mypkg@1.0,5.11-0
set name=pkg.description \
 value="This is a full description of all the interesting attributes of this example package."
set name=pkg.summary value="This is our example package"
set name=info.classification \
 value=org.opensolaris.category.2008:Applications/Accessories
set name=variant.arch value=i386
dir path=opt/mysoftware group=bin mode=0755 owner=root
dir path=opt/mysoftware/bin group=bin mode=0755 owner=root
dir path=opt/mysoftware/lib group=bin mode=0755 owner=root
dir path=opt/mysoftware/man group=bin mode=0755 owner=root
dir path=opt/mysoftware/man/man1 group=bin mode=0755 owner=root
file opt/mysoftware/bin/mycmd path=opt/mysoftware/bin/mycmd group=bin \
 mode=0755 owner=root
file opt/mysoftware/lib/mylib.so.1 path=opt/mysoftware/lib/mylib.so.1 \
 group=bin mode=0644 owner=root
file opt/mysoftware/man/man1/mycmd.1 path=opt/mysoftware/man/man1/mycmd.1 \
 group=bin mode=0644 owner=root
link path=usr/share/man/index.d/mysoftware target=opt/mysoftware/man
depend fmri=pkg:/system/library@0.5.11,5.11-0.175.0.0.0.2.1 type=require

pkgdepend(1) has converted the notation about the file dependency on libc.so.1 to a package dependency on
pkg:/system/library which delivers that file.

We recommended that developers use pkgdepend(1) to generate dependencies, rather than declaring depend
actions manually. Manual dependencies can become incorrect or unnecessary as the package contents might change
over time. This could happen, for example, when a file that an application depends on gets moved to a different
package. Any manually declared dependencies on that package would then be out of date.

Some manually declared dependencies might be necessary if pkgdepend(1) is unable to determine dependencies
completely, in which case we recommend that comments are added to the manifest to explain the nature of each
dependency.

Add Any Facets or Actuators That Are Needed
Facets and actuators are discussed in more detail in Chapter 7 and Chapter 9. Facets allow us to denote actions that
are not required but can be optionally installed. Actuators specify system changes that must occur when an action in
our package is installed, updated, or removed.

Since we are delivering a man page in opt/mysoftware/man/man1 we would like to add a facet to indicate that
documentation is optional.

We would also like an SMF service, svc:/application/man-index:default, to be restarted when our
package is installed, so that our man page is included in the index. The 'restart_fmri' actuator can perform that task.

The man-index service looks in /usr/share/man/index.d for symbolic links to directories containing man
pages, adding the target of each link to the list of directories it scans, hence our earlier addition of that link to our man
pages. This is a good example of the self-assembly idiom that was discussed in Chapter 1, and is used throughout the
packaging of the OS itself.

OpenIndiana ships with a set of pkgmogrify(1) transforms that were used to package the the operating system, in
/usr/share/pkg/transforms. These transforms are discussed in more detail in Chapter 8.

The file called documentation contains the transforms that are closest to what we need here, though since we're
delivering our man page to /opt, we'll use the documentation transforms file as a guide, and use the following
transforms instead. These transforms include a regular expression opt/.+/man(/.+)? which match all paths
beneath opt that contain a man subdirectory:

Chapter 4

27 Packaging and Delivering Software with the Image Packaging System

#chapter-7
#chapter-9
#chapter-1
#chapter-8

<transform dir file link hardlink path=opt/.+/man(/.+)? -> \
 default facet.doc.man true>

<transform file path=opt/.+/man(/.+)? -> \
 add restart_fmri svc:/application/man-index:default>

We can run our manifest through this transform using:

$ pkgmogrify mypkg.p5m.3.res /tmp/doc-transform | pkgfmt > mypkg.p5m.4.res

which changes the three man-page-related actions in our manifest, from:

dir path=opt/mysoftware/man group=bin mode=0755 owner=root
dir path=opt/mysoftware/man/man1 group=bin mode=0755 owner=root
file opt/mysoftware/man/man1/mycmd.1 path=opt/mysoftware/man/man1/mycmd.1 \
 group=bin mode=0644 owner=root

to:

dir path=opt/mysoftware/man owner=root group=bin mode=0755 facet.doc.man=true
dir path=opt/mysoftware/man/man1 owner=root group=bin mode=0755 \
 facet.doc.man=true
file opt/mysoftware/man/man1/mycmd.1 path=opt/mysoftware/man/man1/mycmd.1 \
 owner=root group=bin mode=0644 \
 restart_fmri=svc:/application/man-index:default facet.doc.man=true

For efficiency, we could have included this transform when originally adding metadata to our package, before
running pkgdepend(1).

Verify the Package
The last thing we need to do before publication is run pkglint(1) on our manifest. This helps us determine
whether we've made any errors while writing the manifest that we'd like to catch before publication. Some of the
errors that pkglint(1) can catch are ones also caught either at publication time, or when a user tries to install a
package, but obviously, we'd like to catch errors as early as possible in the package authoring process.

For example, pkglint(1) checks that the package doesn't deliver files already owned by another package, and that
all metadata for shared, reference-counted actions (such as directories) is consistent across packages.

There are two modes in which to run pkglint(1):

• Directly on the manifest itself

• On the manifest, also referencing a repository

For developers who want to quickly check the validity of their manifests, using the first form is usually sufficient.
The second form is recommended to be run at least once before publication to a repository.

By referencing a repository, pkglint(1) can perform additional checks to ensure that the package interacts well
with other packages in that repository.

The full list of checks that pkglint(1) performs can be shown with pkglint -L. Detailed information on how
to enable, disable and bypass particular checks is given in the pkglint(1) man page. It also details how to extend
pkglint(1) to run additional checks.

Chapter 4

28

In the case of our test package, we see:

$ pkglint mypkg.p5m.4.res
Lint engine setup...
Starting lint run...
WARNING opensolaris.manifest001.1 Missing attribute
 'org.opensolaris.consolidation' in pkg:/mypkg@1.0,5.11-0
WARNING pkglint.action005.1 obsolete dependency check skipped: unable
 to find dependency pkg:/system/library@0.5.11-0.168 for
 pkg:/mypkg@1.0,5.11-0

These warnings are acceptable for our purposes:

• opensolaris.manifest001.1 is warning us that we haven't declared a tag that is generally only
required for bundled OpenIndiana software, so we can ignore this warning.

• pkglint.action005.1 is warning us that pkglint(1) wasn't able to find a package called
pkg:/system/library@0.5.11-0.168 which we have generated a dependency on. Since
pkglint(1) was called with just the manifest file as an argument, it does not know which repository
that package is present in, hence the warning.

When pkglint(1) is run with a -r flag referencing a repository containing the package that our test package has a
dependency on, we see:

$ pkglint -c ./oi-reference -r http://pkg.openindiana.org/hipster mypkg.p5m.4.res
Lint engine setup...

PHASE ITEMS
4 4292/4292
Starting lint run...

WARNING opensolaris.manifest001.1 Missing attribute 'org.opensolaris.consolidation' in pkg:/mypkg@1.0,5.11-0
$

Publish the Package
Now that our package is created, dependencies are added, and it has been checked for correctness, we can publish the
package.

IPS provides three different ways to deliver a package:

• Publish to a local file-based repository

• Publish to a remote HTTP-based repository

• Convert to a .p5p package archive

Generally, publishing to a file-based repository is sufficient while testing a package.

If the package needs to be transferred to other machines which cannot access the package repositories, converting one
or more packages to a package archive can be convenient.

The package can also be published directly to an HTTP repository, hosted on a machine with a read/write instance of
svc:/application/pkg/server (which in turn runs pkg.depotd(1M)).

We do not generally recommend this method of publication since there are no authorization/authentication checks on
the incoming package when publishing over HTTP. Publishing to HTTP repositories can be convenient on secure
networks or when testing the same package across several machines if NFS or SMB access to the file repository is
not possible.

Chapter 4

29 Packaging and Delivering Software with the Image Packaging System

Installing packages over HTTP (or preferably HTTPS) is fine, however.

Local File Repositories

pkgrepo(1) can be used to create and manage repositories. We choose a location on our system, create a
repository, then set the default publisher for that repository:

$ pkgrepo create /scratch/my-repository
$ pkgrepo -s /scratch/my-repository set publisher/prefix=mypublisher
$ find /scratch/my-repository/
/scratch/my-repository/
/scratch/my-repository/pkg5.repository

We can now use pkgsend to publish our package, and pkgrepo to examine the repository afterwards:

$ pkgsend -s /scratch/my-repository/ publish -d proto mypkg.p5m.4.res
pkg://mypublisher/mypkg@1.0,5.11-0:20111012T034303Z
PUBLISHED
$ pkgrepo -s /scratch/my-repository info
PUBLISHER PACKAGES STATUS UPDATED
mypublisher 1 online 2011-10-12T03:43:04.117536Z

The file repository can then be served over HTTP or HTTPS using pkg.depotd(1M) if required.

Package Archives

Package archives enable you to distribute groups of packages in a single file. We can use pkgrecv(1) to create
package archives from package repositories, and vice versa.

Package archives can be easily downloaded from an existing website, copied to a USB key or burned to a DVD for
installation in cases where a package repository is not available.

In the case of our simple file repository above, we can create an archive from this repository with the following
command:

$ pkgrecv -s /scratch/my-repository -a -d myarchive.p5p mypkg
Retrieving packages for publisher mypublisher ...
Retrieving and evaluating 1 package(s)...
DOWNLOAD PKGS FILES XFER (MB)
Completed 1/1 3/3 0.7/0.7

ARCHIVE FILES STORE (MB)
myarchive.p5p 14/14 0.7/0.7

We can list the newest available packages from a repository using pkgrepo:

$ pkgrepo -s /scratch/my-repository list '*@latest'
PUBLISHER NAME O VERSION
mypublisher mypkg 1.0,5.11-0:20111012T033207Z

This output can be useful when constructing scripts to create archives with the latest versions of all packages from a
given repository.

Chapter 4

30

Temporary repositories or package archives provided with the -g flag for pkg install and other package
operations cannot be used on systems with child or parent images (non-global zones have a child/parent relationship
with the global zone) since the system repository does not get temporarily configured with that publisher information.

Package archives can be set as sources of local publishers in non-global zones, however.

Test the Package
Having published our package, we are interested in seeing whether it has been packaged properly.

In this example, we ensure that our user has the Software Installation Profile, in order to be able to install packages
without root privileges, then we add the publisher in our repository to the system:

$ sudo su
Password:
usermod -P 'Software Installation' myuser
Found user in files repository.
UX: usermod: myuser is currently logged in, some changes may not take effect
until next login.
^D
$ pfexec pkg set-publisher -p /scratch/my-repository
pkg set-publisher:
 Added publisher(s): mypublisher

You can use pkg install -nv to see what the install command will do without making any changes. The
following example actually installs the package:

$ pfexec pkg install mypkg
 Packages to install: 1
 Create boot environment: No
Create backup boot environment: No

DOWNLOAD PKGS FILES XFER (MB)
Completed 1/1 3/3 0.7/0.7

PHASE ACTIONS
Install Phase 15/15

PHASE ITEMS
Package State Update Phase 1/1
Image State Update Phase 2/2

PHASE ITEMS
Reading Existing Index 8/8
Indexing Packages 1/1

Chapter 4

31 Packaging and Delivering Software with the Image Packaging System

We can then examine the software as it was delivered on the system:

$ find /opt/mysoftware/
/opt/mysoftware/
/opt/mysoftware/bin
/opt/mysoftware/bin/mycmd
/opt/mysoftware/lib
/opt/mysoftware/lib/mylib.so.1
/opt/mysoftware/man
/opt/mysoftware/man/man-index
/opt/mysoftware/man/man-index/term.doc
/opt/mysoftware/man/man-index/.index-cache
/opt/mysoftware/man/man-index/term.dic
/opt/mysoftware/man/man-index/term.req
/opt/mysoftware/man/man-index/term.pos
/opt/mysoftware/man/man1
/opt/mysoftware/man/man1/mycmd.1

In addition to the binaries and man page showing up, we can see that the system has also generated the man page
indexes as a result of our actuator restarting the man-index service.

We can see that pkg info shows the metadata that we added to our package:

$ pkg info mypkg
 Name: mypkg
 Summary: This is our example package
 Description: This is a full description of all the interesting attributes of
 this example package.
 Category: Applications/Accessories
 State: Installed
 Publisher: mypublisher
 Version: 1.0
 Build Release: 5.11
 Branch: 0
Packaging Date: October 12, 2011 03:43:03 AM
 Size: 1.75 MB
 FMRI: pkg://mypublisher/mypkg@1.0,5.11-0:20111012T034303Z

We can also see that pkg search returns hits when querying for files in our package:

$ pkg search -l mycmd.1
INDEX ACTION VALUE PACKAGE
basename file opt/mysoftware/man/man1/mycmd.1 pkg:/mypkg@1.0-0

Chapter 4

32

Chapter 5

Installing, Removing, and Updating Software Packages
This chapter describes how the IPS client works internally when installing, updating and removing the software
installed in an image.

Understanding basically how pkg(1) works will help administrators and developers better understand the various
errors that can occur, and allow them to more quickly resolve package dependency problems.

How package changes are performed
The following steps are executed when pkg(1) is invoked to modify the software installed on the machine:

• Check input for errors

• Determine the system end-state

• Run basic checks

• Run the solver

• Optimize the solver results

• Evaluate actions

• Download content

• Execute actions

• Process actuators

When operating on the global zone, during execution of the steps above, pkg(1) can execute operations on any
non-global zones on the machine, for example to ensure that dependencies are correct between the global and
non-global zones, or to download content or execute actions for non-global zones. Chapter 12 has more detail about
zones.

In the following sections, we'll describe each of these steps.

Check Input for Errors

We perform basic error checking on the options presented on the command line.

Determine the System End State

A description of the desired end state of the system is constructed. In the case of updating all packages in the
image this might be something like "all the packages currently installed, or newer versions of them". In the case
of package removal, it would be "all the packages currently installed without this one".

IPS tries hard to determine what the user intends this end state to look like. In some cases, IPS might determine
an end state that is not what the user intended, even though that end state does match what the user requested.

When troubleshooting, it is best to be as specific as possible. The following command is not specific:

pkg update

If this command fails with a message such as No updates available for this image, then you
might want to try a more specific command such as the following command:

Chapter 5

33 Packaging and Delivering Software with the Image Packaging System

#chapter-12

pkg update "*@latest"

This command defines the end state more exactly, and can produce more directed error messages.

Run Basic Checks

The desired end state of the system is reviewed to make sure that a solution appears possible. During this basic
review, pkg(1) checks that a plausible version exists of all dependencies, and that desired packages do not
exclude each other.

If an obvious error exists, then pkg(1) will print an appropriate error message and exit.

Run the Solver

The solver forms the core of the computation engine used by pkg(5) to determine the packages that can be
installed, updated or removed, given the constraints in the image and constraints introduced by any new
packages for installation.

This problem is an example of a Boolean satisfiability problem, and can be solved by a SAT solver.

The various possible choices for all the packages are assigned boolean variables, and all the dependencies
between those packages, any required packages, etc. are cast as boolean expressions in conjunctive normal form.

The set of expressions generated is passed to MiniSAT. If MiniSAT cannot find any solution, the error handling
code attempts to walk the set of installed packages and the attempted operation, and print the reasons that each
possible choice was eliminated.

If the currently installed set of packages meet the requirements but no other does, pkg(1) will report that there
is nothing to do.

As mentioned in a previous section, the error message generation and specificity is determined by the inputs to
pkg(1). Being as specific as possible in commands issued to pkg(1) will produce the most useful error
messages.

If on the other hand MiniSAT finds a possible solution, we begin optimization.

Optimize the Solver Results

The optimization phase is necessary because there is no way of describing some solutions as more desirable than
others to a SAT solver.

Instead, once a solution is found, IPS adds constraints to the problem to separate less desirable choices, and to
separate the current solution as well. We then repeatedly invoke MiniSAT and repeat the above operation until
no more solutions are found. The last successful solution is taken as the best one.

Clearly, the difficulty of finding a solution is proportional to the number of possible solutions. Being more
specific about the desired result will produce solutions more quickly.

Evaluate Actions

Once the set of package FMRIs that best satisfy the posed problem is found, the evaluation phase begins.

In this phase, we compare the packages currently installed on the system with the end state, and compare
package manifests of old and new packages to determine three lists:

• Actions that are being removed

• Actions that are being added

Chapter 5

34

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://minisat.se

• Actions that are being updated

The action lists are then updated so that:

• directory and link actions are reference counted, mediated link processing is done

• hardlinks are marked for repair if their target file is updated. This is done because updating a target of a
hardlink in a manner that is safe for currently executing processes breaks the hard links.

• editable files moving between packages are correctly handled so that any user edits are not lost.

• the action lists are sorted so that removals, additions and updates occur in the correct order.

All the currently installed packages are then cross-checked to make sure that no packages conflict. That is,
ensuring that two packages do not attempt to deliver a file to the same location, ensuring that directory attributes
for the same directory agree between packages, etc.

If conflicts exist, these are reported and pkg(1) exits with an error message.

Finally, the action lists are scanned to determine if any SMF services need to be restarted if this operation is
performed, whether or not this change can be applied to a running system, whether the boot archive needs to be
rebuilt and whether the amount of space required is available, etc.

Download Content

If pkg(1) is running without the -n flag, processing continues to the download phase.

For each action that requires content, we download any required files by hash and cache them. This step can take
some time if the amount of content to be retrieved is large.

Once downloading is complete, if the change is to be applied to a live system (image is rooted at '/') and a reboot
is required, the running system is cloned and the target image is switched to the clone.

Execute Actions

Executing actions involves actually performing the install or remove methods specific to each action type on the
image.

Execution begins with all the removal actions being executed. If any unexpected content is found in directories
being removed from the system, that content is placed in /var/pkg/lost+found.

Execution then proceeds to install and update actions. Note that all the actions have been blended across all
packages. Thus all the changes in a single package operation are applied to the system at once rather than
package by package. This permits packages to depend on each other, exchange content, etc. safely. For details
on how files are updated, see the description of the file action in Chapter 3.

Process Actuators

If we're updating a live system, any pending actuators are executed at this point. These are typically SMF
service restarts and refreshes. Once these are launched, we update the local search indicies. We discuss actuators
in more detail in Chapter 9

Lastly, if needed, we update the boot archive.

Chapter 5

35 Packaging and Delivering Software with the Image Packaging System

#chapter-3
#chapter-9

Chapter 6

Specifying Dependencies
Dependencies define how packages are related.

IPS provide a variety of different dependency types as discussed in Chapter 3. In this chapter we go into more detail
about how each dependency type can be used to control the software that is installed.

In IPS, a package cannot be installed unless all package dependencies are satisfied. IPS allows packages to be
mutually dependent (to have circular dependencies). IPS also allows packages to have different kinds of
dependencies on the same package at the same time.

Dependency Types
Each section below contains an example depend action, as it would appear in a manifest during package creation.

require

The most basic type of dependency is the require dependency.

If a package A@1.0 contains a require dependency on package B@2, it means that if A@1.0 is installed, a version
of B at 2 or higher must be installed as well.

This acceptance of higher versioned packages reflects the implicit expectation of binary compatibility in newer
versions of existing packages.

These dependencies are typically used to express functional dependencies such as libraries or interpreters such as
Python, Perl, etc. The version portion of the specified FMRI can be omitted; it indicates that any version will suffice.
The latter might not be actually true, but if other dependencies constrain the version adequately, this might save some
effort.

An example require dependency is:

depend fmri=pkg:/system/library type=require

require-any

The require-any dependency is used if more than one package will satisfy a functional requirement. IPS will
pick one of the packages to install if the dependency is not already satisfied.

A typical use might be to ensure that at least one version of Perl was installed on the system, for example. The
versioning is handled in the same manner as for the require dependency.

An example require-any dependency is:

depend type=require-any fmri=pkg:/editor/gnu-emacs/gnu-emacs-gtk \
 fmri=pkg:/editor/gnu-emacs/gnu-emacs-no-x11 \
 fmri=pkg:/editor/gnu-emacs/gnu-emacs-x11

optional

The optional dependency is similar to the require dependency, but the specified package need not be installed.
However, if it is present, it must be at the specified version or greater.

This type of dependency is typically used to handle cases where packages transfer content.

Chapter 6

36

#chapter-3
mailto:A@1.0
mailto:A@1.0

In this case, each version of the package post-transfer would contain an optional dependency on the other package's
post-transfer version, so it would be impossible to install incompatible versions of the two packages.

Omitting the version on an optional dependency makes the dependency a no-op, but is permitted.

An example optional dependency is:

depend fmri=pkg:/x11/server/xorg@1.9.99 type=optional

conditional

The conditional dependency is similar to the require dependency as well, except that a predicate attribute is
present. If the package specified in the value of the predicate attribute is present on the system at the specified or
greater version, the conditional dependency is treated as a require dependency, otherwise it is ignored.

This type of dependency is most often used to install optional extensions to a package if the requisite base packages
are present on the system.

For example, an editor package that has both X11 and terminal versions might place the X11 version in a separate
package, and include a conditional dependency on the X11 version from the text version with the existence of the
requisite X client library package as the predicate.

An example conditional dependency is:

depend type=conditional fmri=library/python-2/pycurl-26 \
 predicate=runtime/python-26

group

The group dependency is used to construct groups of packages.

The group dependency will ignore the version specified; any version of the named package satisfies this dependency.
The named package is required unless the package has been placed on the avoid list (see pkg(1)), the package is
rejected with pkg install --reject, or the package is uninstalled with pkg uninstall.

These three options enable administrators to 'deselect' packages that are the subject of a group dependency. IPS will
remember this and not re-install the package during an update unless it becomes required by another dependency. If
the new dependency is removed by another subsequent operation, then the package is uninstalled again.

A good example of how to use these dependencies is to construct packages containing group dependencies on
packages that are needed for typical uses of a system.

The administrator could install all that apply and know that over subsequent updates to newer versions of the OS, the
appropriate packages would be added to his system.

An example group dependency is:

depend fmri=package/pkg type=group

origin

The origin dependency exists to resolve upgrade issues that require intermediate transitions. The default behavior
is to specify the minimum version of a package (if installed) that must be present on the system being updated.

For example, a typical use might be a database package version 5 that supports upgrade from version 3 or greater, but
not earlier versions.

Chapter 6

37 Packaging and Delivering Software with the Image Packaging System

In this case, version 5 would have an origin dependency on itself at version 3. Thus, if version 5 was being fresh
installed, installation would proceed; but if version 1 of the package was installed, one could not upgrade directly to
this version.

Thus, pkg update database-package would not select version 5 in this case but would pick version 3
instead as the latest possible version it could upgrade to.

The behavior of this dependency can be modified by the root-image attribute being set to true; in this case the
named package must be at the specified version or greater if it is present in the running system, rather than the image
being updated.

This is generally used for operating system issues such as dependencies on boot block installers.

An example origin dependency is:

depend fmri=pkg:/database/mydb@3.0 type=origin

parent

The parent dependency is used for zones or other child images. In this case, the dependency is only checked in the
child image, and specifies a package and version that must be present in the parent image or global zone. The version
specified must match to the level of precision specified.

For example, if the parent dependency is on A@2.1, then any version of A beginning with 2.1. will match. This
dependency is often used to require that packages are kept in sync between non-global zones and the global zone, and
as a short cut a special package name feature/package/dependency/self is used as a synonym for the
exact version of the package that contains this dependency.

This is used to keep key operating system components, such as libc.so.1 installed in the zone synchronized with
the kernel installed in the global zone. The parent dependency is also discussed in Chapter 12.

An example parent dependency is:

depend type=parent fmri=feature/package/dependency/self \
 variant.opensolaris.zone=nonglobal

incorporate

The incorporate dependency is heavily used in OpenIndiana to ensure that compatible versions of software are
installed together.

The basic mechanism is like that of an optional dependency, except that the version matching is that of the
parent dependency: if this package is present, it must be at the specified version to the level specified.

How these dependencies are typically used is that many of them are placed in the same package to define a surface in
the package version space that is compatible. Packages that contain such sets of incorporate dependencies are often
called incorporations; it is typical to define such for sets of software packages that are built together and are not
separately versioned, like much of the kernel.

An example incorporate dependency is:

depend type=incorporate \
 fmri=pkg:/driver/network/e1000g@0.5.11,5.11-2018.0.0.18233

Chapter 6

38

mailto:A@2.1
#chapter-12

exclude

The exclude dependency is seldom used. It allows the containing package to preclude installation with the
specified package at the specified version or higher.

Note that if the version is omitted, no version of the specified package can be installed with the containing package.
These constraints can be frustrating to administrators, and should be avoided where possible.

An example exclude dependency is:

depend fmri=pkg:/x11/server/xorg@1.10.99 type=exclude

Constraints and Freezing

Constraints

Through the careful use of the various types of depend actions described above, packages can define the ways in
which they are allowed to be upgraded.

In general, we often desire that a group of packages installed on a system be supported and upgraded as a group:
Either all packages in the group are updated, or none of the packages in the group are updated. As mentioned earlier,
this is the reason for using the incorporate dependency in OpenIndiana.

The following three partial package manifests show the relationship between the foo and bar packages and the
myincorp incorporation package:

set name=pkg.fmri value=foo@1.0
dir path=foo owner=root group=bin mode=0755
depend fmri=myincorp type=require

set name=pkg.fmri value=bar@1.0
dir path=bar owner=root group=bin mode=0755
depend fmri=myincorp type=require

set name=pkg.fmri value=myincorp@1.0
depend fmri=foo@1.0 type=incorporate
depend fmri=bar@1.0 type=incorporate

The foo and bar packages both have a require dependency on the myincorp incorporation. The myincorp
package has incorporate dependencies such that foo and bar can be upgraded to at most version 1.0, to the
level of granularity defined by the version number and, if installed, must be at least at version 1.0 or greater.

That is, an incorporate dependency on version 1.0 allows for 1.0.1, 1.0.2.1, etc. but doesn't allow version 1.1,
version 2.0, version 0.9, etc. When we deliver a new incorporation package, one that has incorporate
dependencies at a higher version, we will allow foo and bar to upgrade to those versions instead (assuming that the
incorporation package is also being upgraded).

Note here that because foo and bar both have require dependencies on the myincorp package, the
incorporation package must always be installed.

However, conflicting with the requirement we stated at the beginning of this section, there are some situations where
we might want to relax the incorporation constraint.

Perhaps bar can function independently of foo, but we'd like foo to remain within the series of versions our
incorporation constrains it to.

Chapter 6

39 Packaging and Delivering Software with the Image Packaging System

We can relax the incorporation constraints using facets, allowing the administrator to effectively disable certain
incorporate dependencies. Facets are discussed in more detail in Chapter 7. Briefly, facets are special attributes
that can be applied to actions within a package to enable authors to mark those actions as optional.

When actions are marked with facet attributes in this manner, the actions containing those facets can be enabled or
disabled using the pkg change-facet command.

By convention, facets that optionally install incorporate dependencies are named
facet.version-lock.<name>, where name is the package name containing that depend action.

So, for example, using the example above, we could have the following incorporation:

set name=pkg.fmri value=myincorp@1.0
depend fmri=foo@1.0 type=incorporate
depend fmri=bar@1.0 type=incorporate facet.version-lock.bar=true

This incorporation includes our depend action by default, constraining bar to version 1.0. The following command
relaxes this constraint:

pkg change-facet version-lock.bar=false

The bar package is free from the incorporation constraints, and can be upgraded to version 2.0 if necessary.

Freezing

So far, all of the discussion has been around constraints that have been applied during the package authoring process,
by modifying the package manifests themselves.

pkg(1) also has a means for the administrator to apply constraints to the system at runtime.

Using the pkg freeze command, the administrator can prevent a given package from being updated past either its
current version, or a version specified on the command line. This capability is effectively the same as an
incorporate dependency.

See the pkg(1) man page for more information on the freeze command.

In order to apply more complex dependencies to an image, it is necessary to create and install a package that includes
those dependencies.

Chapter 6

40

#chapter-7

Chapter 7

Allowing Variations
In this chapter we explore how variants and facets are used in IPS to provide different installation options to the end
user.

Variants
Since OpenIndiana supports multiple architectures, one common error made with the SVR4 packaging system was
the accidental installation of packages for an incorrect architecture. With the introduction of software repositories, the
prospect of maintaining a separate repository for each supported architecture seemed unappealing to ISVs and error
prone for customers. As a result, IPS supports installation of a single package on multiple architectures.

The mechanism that implements this feature is called a variant. A variant enables the properties of the target image to
determine which software components are actually installed.

A variant has two parts: its name, and the list of possible values. The variants defined in OpenIndiana are:

Name Values

variant.arch sparc, i386

variant.opensolaris.zone global, nonglobal

variant.debug.* true, false

Variants appear in two places in a package:

• A set action names the variant and defines the values that apply to this package.

• Any action that can only be installed for a subset of the variant values has a tag that specifies the name of
the variant and the value on which it is installed.

For example, a package that delivers the symbolic link /var/ld/64 might include:

set name=variant.arch value=sparc value=i386
dir group=bin mode=0755 owner=root path=var/ld
dir group=bin mode=0755 owner=root path=var/ld/amd64 \
 variant.arch=i386
dir group=bin mode=0755 owner=root path=var/ld/sparcv9 \
 variant.arch=sparc
link path=var/ld/32 target=.
link path=var/ld/64 target=sparcv9 variant.arch=sparc
link path=var/ld/64 target=amd64 variant.arch=i386

Note that components that are delivered on both sparc and i386 receive no variant tag, but those delivered to one
architecture or the other receive the appropriate tag. It is perfectly reasonable for actions to contain multiple tags for
different variant names; there might be debug and nondebug binaries for both sparc and i386.

In OpenIndiana, kernel components are commonly elided from packages installed in zones, as they serve no useful
purpose. Thus, they are marked with the opensolaris.zone variant set to global so that they are not installed
in non-global zones. This is typically done in the manifest during publication with a pkgmogrify(1) rule. Thus
the packages from the i386 and sparc builds are already marked for zones. We then use the pkgmerge(1)
command to take the packages from the sparc and i386 builds and merge them together. This is far more reliable and
faster than attempting to construct such packages manually.

Chapter 7

41 Packaging and Delivering Software with the Image Packaging System

In general, it is not practical to define new variants without modifying the packaging system as no practical means
currently exists for defining a default value for variants in general. Package developers cannot define new variants at
present.

However, the variant.debug.* portion of the variant namespace is predefined to have a default version of
false; thus, developers can provide debug versions of their components, tagged with the appropriate variant, and
users can select that variant if problems arise. Remember that variants are set per image, so selecting a suitable name
that is unique at the appropriate resolution for that piece of software is important.

Note that variant tags are applied to any actions that differ between architectures during merging; this includes
dependencies, set actions, etc. Packages that are marked as not supporting one of the variant values of the current
image are not considered for installation.

The pkgmerge(1) man page provides several examples of merging packages. Note that it will merge across
multiple different variants at the same time if needed.

Facets
Often, package developers have optional portions of their software that actually belong with the main body, but some
people might not want to install. Some examples are localization files for different locales, man pages and other
documentation, header files needed only by developers or DTrace users.

Traditionally, such optional content has been placed in separate packages with an arbitrarily selected naming
convention (such as appending -dev or -devel to the package name) enabling administrators to select the optional
content.

This has led to various problems, such as adding a new locale for all the software on a system being a rather irritating
task, as the admin has to discover all the necessary packages by examining the lists of available packages.

IPS has implemented a mechanism similar to variants called facets to deal with this problem. Like variants, facets
have a name and a value. The value is either set to true or false in the image. The default value is true. The
facet namespace is hierarchal, with matching rules such that the longest match wins.

For example, the default value for all facets is true; the pkg(1) client implicitly sets facet.* to true.
Documentation in OpenIndiana packages is tagged with the type of documentation. For example, man pages are
tagged with facet.doc.man=true in the package manifests.

The following commands include man pages but exclude all other documentation from being installed in this image:

pkg change-facet facet.doc.*=false
pkg change-facet facet.doc.man=true

Similarly, the following commands install only the German localization in this image:

pkg change-facet facet.locale.*=false
pkg change-facet facet.locale.de=true

If an action contains multiple facet tags, the action is installed if the value of any of the facet tags is true.

The pkg facet command is useful in determining which facets are set in the image.

The package developer can use pkgmogrify(1) to quickly tag his man pages, localizations, etc. using regular
expressions to match the different types of files. This is described in detail in Chapter 8.

Facets can also be used to manage dependencies, essentially turning dependencies on and off, depending on whether
the facet is set. See Chapter 6 for a discussion of facet.version-lock.*.

OpenIndiana facets that might be of use for software developers include:

Chapter 7

42

#chapter-8
#chapter-6

facet.devel facet.locale.es_BO facet.locale.lt_LT

facet.doc facet.locale.es_CL facet.locale.lv

facet.doc.man facet.locale.es_CO facet.locale.lv_LV

facet.doc.pdf facet.locale.es_CR facet.locale.mk

facet.doc.info facet.locale.es_DO facet.locale.mk_MK

facet.doc.html facet.locale.es_EC facet.locale.ml

facet.locale facet.locale.es_ES facet.locale.ml_IN

facet.locale.af facet.locale.es_GT facet.locale.mr

facet.locale.af_ZA facet.locale.es_HN facet.locale.mr_IN

facet.locale.ar facet.locale.es_MX facet.locale.ms

facet.locale.ar_AE facet.locale.es_NI facet.locale.ms_MY

facet.locale.ar_BH facet.locale.es_PA facet.locale.mt

facet.locale.ar_DZ facet.locale.es_PE facet.locale.mt_MT

facet.locale.ar_EG facet.locale.es_PR facet.locale.nb

facet.locale.ar_IQ facet.locale.es_PY facet.locale.nb_NO

facet.locale.ar_JO facet.locale.es_SV facet.locale.nl

facet.locale.ar_KW facet.locale.es_US facet.locale.nl_BE

facet.locale.ar_LY facet.locale.es_UY facet.locale.nl_NL

facet.locale.ar_MA facet.locale.es_VE facet.locale.nn

facet.locale.ar_OM facet.locale.et facet.locale.nn_NO

facet.locale.ar_QA facet.locale.et_EE facet.locale.no

facet.locale.ar_SA facet.locale.eu facet.locale.or

facet.locale.ar_TN facet.locale.fi facet.locale.or_IN

facet.locale.ar_YE facet.locale.fi_FI facet.locale.pa

facet.locale.as facet.locale.fr facet.locale.pa_IN

facet.locale.as_IN facet.locale.fr_BE facet.locale.pl

facet.locale.az facet.locale.fr_CA facet.locale.pl_PL

facet.locale.az_AZ facet.locale.fr_CH facet.locale.pt

facet.locale.be facet.locale.fr_FR facet.locale.pt_BR

facet.locale.be_BY facet.locale.fr_LU facet.locale.pt_PT

facet.locale.bg facet.locale.ga facet.locale.ro

facet.locale.bg_BG facet.locale.gl facet.locale.ro_RO

facet.locale.bn facet.locale.gu facet.locale.ru

facet.locale.bn_IN facet.locale.gu_IN facet.locale.ru_RU

facet.locale.bs facet.locale.he facet.locale.ru_UA

Chapter 7

43 Packaging and Delivering Software with the Image Packaging System

facet.locale.bs_BA facet.locale.he_IL facet.locale.rw

facet.locale.ca facet.locale.hi facet.locale.sa

facet.locale.ca_ES facet.locale.hi_IN facet.locale.sa_IN

facet.locale.cs facet.locale.hr facet.locale.sk

facet.locale.cs_CZ facet.locale.hr_HR facet.locale.sk_SK

facet.locale.da facet.locale.hu facet.locale.sl

facet.locale.da_DK facet.locale.hu_HU facet.locale.sl_SI

facet.locale.de facet.locale.hy facet.locale.sq

facet.locale.de_AT facet.locale.hy_AM facet.locale.sq_AL

facet.locale.de_BE facet.locale.id facet.locale.sr

facet.locale.de_CH facet.locale.id_ID facet.locale.sr_ME

facet.locale.de_DE facet.locale.is facet.locale.sr_RS

facet.locale.de_LI facet.locale.is_IS facet.locale.sv

facet.locale.de_LU facet.locale.it facet.locale.sv_SE

facet.locale.el facet.locale.it_CH facet.locale.ta

facet.locale.el_CY facet.locale.it_IT facet.locale.ta_IN

facet.locale.el_GR facet.locale.ja facet.locale.te

facet.locale.en facet.locale.ja_JP facet.locale.te_IN

facet.locale.en_AU facet.locale.ka facet.locale.th

facet.locale.en_BW facet.locale.ka_GE facet.locale.th_TH

facet.locale.en_CA facet.locale.kk facet.locale.tr

facet.locale.en_GB facet.locale.kk_KZ facet.locale.tr_TR

facet.locale.en_HK facet.locale.kn facet.locale.uk

facet.locale.en_IE facet.locale.kn_IN facet.locale.uk_UA

facet.locale.en_IN facet.locale.ko facet.locale.vi

facet.locale.en_MT facet.locale.ko_KR facet.locale.vi_VN

facet.locale.en_NZ facet.locale.ks facet.locale.zh

facet.locale.en_PH facet.locale.ks_IN facet.locale.zh_CN

facet.locale.en_SG facet.locale.ku facet.locale.zh_HK

facet.locale.en_US facet.locale.ku_TR facet.locale.zh_HK

facet.locale.en_ZW facet.locale.ky facet.locale.zh_SG

facet.locale.eo facet.locale.ky_KG facet.locale.zh_TW

facet.locale.es_AR facet.locale.lg

Chapter 7

44

Chapter 8

Modifying Package Manifests Programmatically
This chapter explains how package manifests can be machine edited to permit the automated annotation and checking
of package manifests.

Chapter 4 covers the basics for how to publish packages. These techniques are all that is necessary to publish a
package, but when publishing a large package, a large number of packages, or publishing packages over a period of
time, there can be aspects which involve a significant time commitment for doing repetitive tasks.

For example, one rule that's used when publishing OpenIndiana is that all kernel modules should be tagged as
requiring a reboot.

One option would be to impose this constraint through human examination and intervention, but that would be costly
and likely error prone.

A second option would be to write a script or program that would handle tagging these actions. The difficulty here is
that to be sure the program tagged actions correctly, it would need to parse the actions. This can certainly be done,
but it duplicates a lot of functionality already in the IPS framework.

The third, and best, option is to use pkgmogrify(1), provided by IPS, to transform the package manifests in
repeatable ways.

There are two types of rules pkgmogrify(1) understands, transform and include. Transform rules are used to
modify actions. Include rules cause other files to be processed.

Transform Rules
When publishing OpenIndiana, we made the assumption that all files delivering in a subdirectory named "kernel"
should be treated as kernel modules. This is the rule used to do the tagging:

<transform file path=.*kernel/.+ -> default reboot-needed true>

• The rule is enclosed with ‘<’ and ‘>’. The portion of the rule to the left of the ‘->’ is the selection section
or matching section. The portion to the right of the ‘->’ is the execution section of the operation.

• ‘transform’ is the type of the rule

• ‘file’ means this rule is for file actions

• ‘path=.*kernel/.+’ means that only file actions with a path attribute that matches the regular
expression ‘.*kernel/.+’ are transformed

• ‘default’ means that what follows should be added to a matching action unless a value for the attribute
has already been set

• ‘reboot-needed’ is the attribute being set

• ‘true’ is the value of the attribute

The selection or matching section of a transform rule can restrict by action type and by action attribute values. The
pkgmogrify(1) man page goes into detail about how these matching rules work, but the typical uses are for
selecting actions which deliver to certain areas of the file system.

Chapter 8

45 Packaging and Delivering Software with the Image Packaging System

#chapter-4

For example, a rule that began like this

<transform file dir link hardlink path=usr/bin.* -> [operation]>

could be used to ensure that usr/bin and everything delivered inside of it defaulted to the correct user or group.
There is a long list of operations which pkgmogrify(1) can perform, detailed in the man page, which enable a
package developer to programmatically add, remove, set, and edit actions' attributes as well as add and remove entire
actions.

Include Rules
Include rules enable transforms to be spread across multiple files and subsets reused by different manifests. Suppose
a developer needs to deliver two packages: A and B. Both packages should have their source-url set to the same
url, but only package B should have its files in /etc set to be group=sys.

In the manifest for package A, an include rule which pulls in the file with the source-url transform should be
added. In package B, an include rule which pulls in the file containing the file group setting transform should be
added.

Finally, an include rule which pulls in the file with the source-url transform should be added to either package B
or the file with the transform that sets the group.

Transform Order
Transforms are applied in the order in which they are encountered in a file. The ordering can be used to simplify the
matching portions of transforms.

Suppose all files delivered in /foo should have a default group of sys, except those delivered in /foo/bar,
which should have a default group of bin.

It's certainly possible to write a complex regular expression which matches all paths that begin with /foo, except
those that begin with /foo/bar. Using the ordering of transforms makes it much simpler.

When ordering default transforms, always go from most specific to most general. Otherwise the latter rules will never
be used.

In this case, the two rules would look like this:

<transform file path=foo/bar/.* -> default group bin>
<transform file path=foo/.* -> default group sys>

Using transforms to add an action using the matching described above would be difficult since the package developer
would need to find a pattern which matched each package delivered once and only once.

pkgmogrify(1) creates synthetic actions to help with this issue. As pkgmogrify(1) processes manifests, for
each manifest that sets the pkg.fmri attribute, a synthetic pkg action is created by pkgmogrify(1). The
package developer can match against the pkg action as if it was actually in the manifest.

For example, suppose a package developer wanted to add to every package an action containing the website
(foo.com) where the source code for the delivered software can be found. The following transform accomplishes that:

<transform pkg -> emit set info.source-url=http://foo.com>

Chapter 8

46

Packaged Transforms
As a convenience to developers, a set of the transforms that were used when packaging OpenIndiana itself are
available in /usr/share/pkg/transforms. At the time of writing, these are:

developer

Sets facet.devel on *.h header files delivered to /usr/.*/include, archive and lint libraries,
pkg-config(1) data files, and autoconf(1) macros.

documentation

Sets a variety of facet.doc.* facets on documentation files.

locale

Sets a variety of facet.locale.* facets on files which are locale-specific.

smf-manifests

Adds a restart_fmri actuator pointing to the svc:/system/manifest-import:default on
any packaged SMF manifests so that the system will import that manifest after the package is installed.

Chapter 8

47 Packaging and Delivering Software with the Image Packaging System

Chapter 9

Causing System Change With SMF
This chapter explains how to use the Service Management Facility (SMF) to automatically handle any necessary
system changes that should occur as a result of package installation.

The package developer must determine which actions, when initially installed, updated or removed should cause a
change to the system. For each of those actions, the package developer needs to determine which existing service
provides the desired system change, or write a new service which provides the needed functionality and ensure that
service is delivered to the system.

When the set of actions has been determined, those actions must be tagged in the package manifest with the correct
actuator in order to cause that system change to occur.

As discussed in Chapter 1, some system changes are needed to employ the software self-assembly concept used by
OpenIndiana and IPS, but system changes are not limited to this role.

We'll discuss the available actuators in the next section and then provide some examples.

Actuators
The following tags can be added to any action in a manifest:

reboot-needed

This actuator takes the value true or false. This actuator declares that installation, removal or update of the
tagged action requires a reboot when IPS is operating on a live image.

The following actuators are related to SMF services, and are the ones we will focus on in this chapter.

SMF Actuators

SMF actuators take a single SMF FMRI as a value, possibly including globbing characters to match multiple FMRIs.
If the same FMRI is tagged by multiple actions, possibly across multiple packages being operated on, IPS will only
trigger that actuator once.

The following list of SMF actuators describes the effect on the service FMRI that is the value of each named actuator:

disable_fmri

The given service should be disabled prior to the package operation being performed

refresh_fmri

The given service should be refreshed after the package operation has completed

restart_fmri

The given service should be restarted after the package operation has completed

suspend_fmri

The given service should be temporarily suspended prior to the package operation and enabled once it has
completed

Delivering an SMF Service
A package that delivers a new SMF service usually needs a system change. The package delivers the SMF manifest
file and method script, and the packaged application requires that the SMF service it delivers must be available after
package installation.

Chapter 9

48

#chapter-1

SVR4 post-install scripting could run an SMF command to restart the
svc:/system/manifest-import:default service.

In IPS, the action delivering the manifest file into lib/svc/manifest or var/svc/manifest should instead
be tagged with the actuator: restart_fmri=svc:/system/manifest-import:default.

The actuator ensures that when the manifest is added, updated, or removed, the manifest-import service is
restarted, causing the service delivered by that SMF manifest to be added, updated, or removed.

If the package is added to a live-system, this action is performed once all packages have been added to the system
during that packaging operation. If the package is added to an alternate boot environment, this action is performed
during the first boot of that boot environment.

A Service That Runs Once
Another common example is a system change that performs one-time configuration of the new software environment.

In the package delivering our application, we would include the following actions:

file path=opt/myapplication/bin/run-once.sh owner=root group=sys mode=0755
file path=lib/svc/manifest/application/myapplication-run-once.xml owner=root group=sys \
 mode=0644 restart_fmri=svc:/system/manifest-import:default

The SMF method script for the service could contain anything that is needed to further configure our application, or
modify the system so that our application runs efficiently. In this example, we'll just have it write a simple log
message.

Generally, we also want to ensure that the SMF service only performs work if the application has not already been
configured. Another approach would be to package the service separate from the application itself, then have the
method script remove the package that contains the service.

Our method script is:

#!/usr/bin/sh
. /lib/svc/share/smf_include.sh
assembled=$(/usr/bin/svcprop -p config/assembled $SMF_FMRI)
if ["$assembled" == "true"] ; then
 exit $SMF_EXIT_OK
fi
svccfg -s $SMF_FMRI setprop config/assembled = true
svccfg -s $SMF_FMRI refresh
echo "This is output from our run-once method script"

When testing a method script, it is advisable to run pkg verify before and after installing the package that runs
the actuator. Compare the output of each run to ensure that the script doesn't attempt to modify any files that are not
marked as editable.

Chapter 9

49 Packaging and Delivering Software with the Image Packaging System

Our SMF service manifest is:

<?xml version="1.0"?>
<!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1">

<service_bundle type='manifest' name='MyApplication:run-once'>

<service
 name='application/myapplication/run-once'
 type='service'
 version='1'>

 <single_instance />

 <dependency
 name='fs-local'
 grouping='require_all'
 restart_on='none'
 type='service'>
 <service_fmri value='svc:/system/filesystem/local:default' />
 </dependency>

 <dependent
 name='myapplication_self-assembly-complete'
 grouping='optional_all'
 restart_on='none'>
 <service_fmri value='svc:/milestone/self-assembly-complete' />
 </dependent>
 <instance enabled='true' name='default'>
 <exec_method
 type='method'
 name='start'
 exec='/opt/myapplication/bin/run-once.sh'
 timeout_seconds='0'/>

 <exec_method
 type='method'
 name='stop'
 exec=':true'
 timeout_seconds='0'/>

 <property_group name='startd' type='framework'>
 <propval name='duration' type='astring' value='transient' />
 </property_group>

 <property_group name='config' type='application'>
 <propval name='assembled' type='boolean' value='false' />
 </property_group>
 </instance>
</service>
</service_bundle>

Chapter 9

50

Note that the SMF service has a startd/duration property set to transient so that svc.startd(1M)
doesn't track processes for this service. Also note that it adds itself as a dependency to the
self-assembly-complete system milestone.

Self-Assembly Hints
Here are some additional hints when writing SMF methods to support self-assembly:

Timestamps

In an SMF method script, it can be efficient to use the output of ls -t on a directory of packaged configuration file
fragments, using head -1 to select the most recently changed version. The timestamp of this file can be compared
with the timestamp of the unpackaged configuration file which is compiled from those fragments. This comparison
can be used when deciding whether the service needs to recompile the configuration file.

This can be useful if the process of compiling a configuration file from those fragments is expensive to perform each
time the method script runs.

Timeouts

In the example SMF service used in this chapter, we had a timeout_seconds value of 0 for the start method.
This means that SMF will wait indefinitely for self-assembly to complete.

Depending on circumstances, developers might want to impose a finite timeout on their self-assembly processes,
enabling SMF to drop the service to maintenance if something goes wrong. This can assist the developer when
debugging.

Chapter 9

51 Packaging and Delivering Software with the Image Packaging System

Chapter 10

Advanced Update
This chapter deals with more complex package update issues, and describes several features in IPS designed to
simplify these problems.

For most update operations, IPS will automatically do exactly what is needed to install updated packages. There are
some cases, however, that require the developer to provide additional information to IPS.

For performance reasons, the solver works purely on the dependency information included in packages. Packages
whose dependencies indicate that they can be installed at the same time but whose content conflicts cause conflict
checking to fail in pre-installation.

An example of conflicting content is two packages installing the same file. If conflict checking fails, the user must try
different package versions and then manually specify acceptable versions.

Ensuring that conflicting packages cannot be installed due to constraining dependencies is a responsibility of the
package developer. As mentioned in Chapter 4, pkglint(1) can assist with this task.

Renaming, Merging and Splitting Packages
Often, the desired organization of a software component changes, whether because of mistakes in the original
packages, changes in the product or its usage over time, or changes in the surrounding software environment. Also,
sometimes just the name of a package needs to change. When contemplating such changes, thought must be given to
the customer who is upgrading their system to ensure that unintended side effects do not occur.

Three types of package reorganization are discussed in this section, in order of increasingly complex considerations
for pkg update:

1. Renaming single packages

2. Merging two packages

3. Splitting a package

Renaming a Single Package

Simple renames are straightforward. IPS provides a mechanism to indicate that a package has been renamed. To
rename a package, publish a new version of the existing package with the following two actions:

• A set action in the following form:

set name=pkg.renamed value=true

• A require dependency on the new package

A renamed package cannot deliver contents other than depend or set actions.

The new package must ensure that it cannot be installed at the same time as the original package before the rename.
If both packages are covered by the same incorporation dependency, this is automatic.

If not, the new package must contain an optional dependency on the old package at the renamed version. This
ensures that the solver will not select both packages, which would fail conflict checking.

Anyone installing this renamed package will automatically receive the new named package, since it is a dependency
of the old version. If a renamed package is not depended upon by any other packages, it is automatically removed
from the system. The presence of older software can cause a number of renamed packages to be shown as
installed; when that older software is removed the renamed packages are automatically removed as well.

Chapter 10

52

#chapter-4

Packages can be renamed multiple times without issue, although this is not recommended as it can be confusing to
users.

Merging Two Packages

Merging packages is straightforward as well. The following two cases are examples of merging packages:

• One package absorbs another package at the renamed version.

• Two packages are renamed to the same new package name.

One Package Absorbs Another

Suppose package A@2 will absorb package B@3. Simply rename package B to package A@2; remember to include
an optional dependency in A@2 on B@3 unless both packages are incorporated so they update in lockstep as above.
A user upgrading B to B@3 will now get A installed, which has absorbed B.

Two Packages Are Renamed

In this case, simply rename both packages to the name of the new merged package, including two optional
dependencies on the old packages in the new one if they are not otherwise constrained.

Splitting a Package

When you split a package, rename each resulting new package as described in Renaming a Single Package. If one of
the resulting new packages is not renamed, the pre-split and post-split versions of that package are not compatible
and might violate dependency logic when the end user tries to update the package.

Rename the original package, including multiple require dependencies on all new packages that resulted from the
split. This ensures that any package that had a dependency on the original package will get all the new pieces.

Some components of the split package can be absorbed into existing packages as a merge. See One Package Absorbs
Another.

Obsoleting Packages
Package obsoletion is the mechanism by which packages are emptied of contents and are removed from the system.
Such a package does not satisfy require dependencies, so an installed package with a require dependency on a
package that becomes obsolete will prevent update unless a newer version of the installed package is available that
does not contain the require dependency.

A package is made obsolete by publishing a new version with no content except for the following set action:

set name=pkg.obsolete value=true

A package can be made non-obsolete by publishing newer versions. Users who updated through the obsoletion will
lose this package, while those who did not will not.

Preserving Editable Files During Package Renaming or Path Changes
One common issue with updating packages is the migration of editable files, either in the file system or between
packages. IPS attempts to migrate editable files that move between packages (for example, as the result of a rename)
if the file is not renamed and the path of the file has not changed. However, if the path changes, the following must be
done for the user's customizations to be preserved:

If the file action in the old package does not contain the attribute original_name, that attribute must be added.
Set the value to the original name of the package, followed by a colon and then the path to the file without a leading

Chapter 10

53 Packaging and Delivering Software with the Image Packaging System

#renaming-a-single-package
#one-package-absorbs-another
#one-package-absorbs-another

'/'. Once this is present on an editable file, it must not be changed. This value acts as a unique identifier for all moves
going forward so that regardless of the number of versions skipped on an update, the user's content is properly
preserved.

Moving Unpackaged Contents on Directory Removal or Rename
Normally, unpackaged contents are salvaged when the containing directory is removed, because the last reference to
it disappears.

When a directory changes names, the packaging system treats this as the removal of the old directory and the creation
of a new one. Any editable files that are still in the directory when the directory is renamed or removed are salvaged.

If the old directory has unpackaged content such as log files that should be moved to the new directory, this can be
done with the salvage-from attribute if placed on the new directory.

For example, suppose we want to rename a directory from:

/opt/mydata/log

to:

/opt/yourdata/log

In the same package version that removes the former directory and introduces the latter directory, include the
following attribute on the dir action that creates /opt/yourdata/log:

salvage-from=opt/mydata/log

Any unpackaged contents of any time are migrated to the new location.

The salvage-from attribute is covered later in this chapter, when discussing data that should be shared between
boot environments.

Delivering Multiple Implementations of a Given Application
In some cases, it can be desirable to deliver multiple implementations of a given application, having all
implementations available on the system, but with one implementation set as the preferred implementation.

The preferred implementation would have symlinks to its binaries installed, say, to /usr/bin for ease of discovery.
We would also like to allow the administrator to change the preferred implementation as required, without having to
add or remove any additional packages.

A good example of this would be where we have several versions of GCC installed, each in their own package, but
would like /usr/bin/gcc to always point to our preferred version.

IPS uses the concept of mediated links for this purpose. A mediated link is a symbolic link that is controlled by the
pkg set-mediator and pkg unset-mediator commands, documented in the pkg(1) man page.

The link actions in the packages that deliver different implementations of that application are said to participate in a
mediation.

Chapter 10

54

The following attributes can be set on link actions to control how mediated links are delivered:

mediator

Specifies the entry in the mediation namespace shared by all path names participating in a given mediation
group (for example python).

Link mediation can be performed based on mediator-version and mediator-implementation.
All mediated links for a given path name must specify the same mediator. However, not all mediator
versions and implementations need to provide a link at a given path. If a mediation does not provide a link,
then the link is removed when that mediation is selected.

A mediator, in combination with a specific version and/or implementation represents a mediation that can
be selected for use by the packaging system.

mediator-version

Specifies the version (expressed as a dot-separated sequence of non-negative integers) of the interface
described by the mediator attribute. This attribute is required if mediator is specified and
mediator-implementation is not. A local system administrator can explicitly set the version to use.
The value specified should generally match the version of the package delivering the link (for example,
runtime/python-26 should use mediator-version=2.6), although this is not required.

mediator-implementation

Specifies the implementation of the mediator for use in addition to or instead of the
mediator-version. Implementation strings are not considered to be ordered. A string is arbitrarily
selected by pkg(5) if not explicitly specified by a system administrator.

The value can be a string of arbitrary length composed of alpha-numeric characters and spaces. If the
implementation itself can be or is versioned, then the version should be specified at the end of the string,
after a '@' (expressed as a dot-separated sequence of non-negative integers). If multiple versions of an
implementation exist, the default behavior is to select the implementation with the highest version.

If only one instance of an implementation-mediation link at a particular path is installed on a system, then
that one is chosen automatically. If future links at the path are installed, the link will not be switched unless
a vendor, site, or local override applies, or if one of the links is version-mediated.

mediator-priority

When resolving conflicts in mediated links, pkg(5) normally chooses the link with the greatest value of
mediator-version or based on mediator-implementation if that is not possible. This attribute
is used to specify an override for the normal conflict resolution process.

If this attribute is not specified, the default mediator selection logic is applied.

• If the value is vendor, the link is preferred over those that do not have a mediator-priority
specified.

• If the value is site, the link is preferred over those that have a value of vendor or that do not have
a mediator-priority specified.

A local system administrator can override the selection logic described above.

Here are two sample manifests that participate in a mediation for the link /usr/bin/myapp:

set name=pkg.fmri value=pkg://test/myapp-impl-1@1.0,5.11:20111021T035233Z
file path=usr/myapp/5.8.4/bin/myapp group=sys mode=0755 owner=root
link path=usr/bin/myapp target=usr/myapp/5.8.4/bin/myapp mediator=myapp mediator-version=5.8.4

set name=pkg.fmri value=pkg://test/myapp-impl-2@1.0,5.11:20111021T035239Z
file path=usr/myapp/5.12/bin/myapp group=sys mode=0755 owner=root
link path=usr/bin/myapp target=usr/myapp/5.12/bin/myapp mediator=myapp mediator-version=5.12

Chapter 10

55 Packaging and Delivering Software with the Image Packaging System

Chapter 10

56

We can install both of these packages to the same image:

$ pkg list myapp-impl-1 myapp-impl-2
NAME (PUBLISHER) VERSION IFO
myapp-impl-1 1.0 i--
myapp-impl-2 1.0 i--

Using the pkg mediator command, we can see the mediations in use:

$ pkg mediator
MEDIATOR VER. SRC. VERSION IMPL. SRC. IMPLEMENTATION
myapp local 5.12 system
$ ls -al usr/bin/myapp
lrwxrwxrwx 1 root sys 23 Oct 21 16:58 usr/bin/myapp -> usr/myapp/5.12/bin/myapp

We can see which other packages participate in the myapp mediation using pkg search:

$ pkg search -ro path,target,mediator,mediator-version,pkg.shortfmri ::mediator:myapp
PATH TARGET MEDIATOR MEDIATOR-VERSION PKG.SHORTFMRI
usr/bin/myapp usr/myapp/5.12/bin/myapp myapp 5.12 pkg:/myapp-impl-2@1.0
usr/bin/myapp usr/myapp/5.8.4/bin/myapp myapp 5.8.4 pkg:/myapp-impl-1@1.0

We can also change the mediation as desired:

pkg set-mediator -V 5.8.4 myapp
 Packages to update: 2
 Mediators to change: 1
 Create boot environment: No
Create backup boot environment: No

PHASE ITEMS
Indexing Packages 2/2
PHASE ACTIONS
Update Phase 1/1

PHASE ITEMS
Image State Update Phase 2/2
Reading Existing Index 8/8
Indexing Packages 2/2

ls -al usr/bin/myapp
lrwxrwxrwx 1 root sys 24 Oct 21 17:02 usr/bin/myapp -> usr/myapp/5.8.4/bin/myapp

Delivering Directories To Be Shared Across Boot Environments
In general, IPS doesn't support delivery of packaged contents to datasets that span boot environments (BEs). This is
because such shared contents, if updated in one boot environment, might not meet the definitions for other boot
environments. For example, we could foresee a case where a pkg verify of packaged content that was delivered
with different attributes by packages in two separate boot environments, yet shared between them, would result in in
errors.

However, some of the unpackaged files (the files stored in the file system that were not delivered by any IPS
package) found in a boot environment must be shared across boot environments to preserve normal system operation
in the face of multiple boot environments.

Chapter 10

57 Packaging and Delivering Software with the Image Packaging System

Some examples include /var/mail, /var/log and the like. Customers are likely to place such data on separate
datasets as well, or on remote file servers. However, creating per-directory datasets would mean that many datasets
would be created per zone, which is not desirable.

The goal can be achieved using a shared dataset, mounted into the BE during boot, with symbolic links from
locations inside the BE pointing into that dataset. Inside the BE, applications deliver primordial directory structure to
a .migrate staging directory.

As noted above, no packaged file content should be shared between boot environments, furthermore, it is not possible
or desirable to share any file system objects other than files.

Update is supported from older versions of a package that did not share content. Use a salvage-from attribute as
discussed in Moving Unpackaged Contents on Directory Removal or Rename and shown in the example below.

The package should no longer deliver the old directory.

During boot, a script can be run as part of an SMF method script to move file content from the .migrate directory into
the shared dataset. This script is responsible for recreating the directory structure that it finds under the .migrate
directory in the boot environment, and moving file contents from the .migrate directory to the shared dataset.

For example, for a package that previously delivered the action:

dir path=opt/myapplication/logs owner=daemon group=daemon mode=0755

we first create a dataset rpool/OPTSHARE (which can be used by other shared content from /opt) This dataset
creation could alternatively be done by the SMF method script during boot:

zfs create rpool/OPTSHARE
zfs set mountpoint=/opt/share rpool/OPTSHARE

A package can then deliver a symbolic link from their previously packaged directory to an as-yet nonexistent target
beneath /opt/share:

link path=opt/myapplication/logs target=../../opt/share/myapplication/logs

Packages can now deliver the directory into this .migrate area:

dir path=opt/.migrate/myapplication/logs owner=daemon group=daemon \
 mode=0755 reboot-needed=true salvage-from=/opt/myapplication/logs

We use the salvage-from attribute to move files from the old location into the .migrate directory.

We require a reboot-needed actuator for these directory entries in order to properly support updates of
Immutable Zones mentioned in Chapter 1, which boot as far as the
svc:/milestone/self-assembly-complete:default milestone in read/write mode if self-assembly is
required, before rebooting read-only. See the discussion of file-mac-profile in the zonecfg(1M) manual
page for more on Immutable Zones.

Our SMF service, on reboot, will then move any salvaged directory content into the shared dataset, and the symbolic
links from /opt/myapplication point into that shared dataset.

Chapter 10

58

#moving-unpackaged-contents-on-directory-removal-or-rename
#chapter-1

Chapter 11

Signing Packages
One important consideration in the design of IPS was being able to validate that the software installed on the
customer's machine was actually as originally specified by the publisher. This ability to validate the installed system
is key for both the customer and the support engineering staff.

To support this validation, manifests can be signed in IPS with the signatures becoming part of the manifest.
Signatures are represented as actions like all other manifest content. Since manifests contain all the package metadata
- file permissions, ownership, content hashes, etc., a signature action that validates that the manifest has not be
altered since it was published is an important part of system validation.

The signature actions form a tree that includes the delivered binaries such that complete verification of the
installed software is possible.

There are other uses for manifest signing beyond validation; signatures can also be used to indicate approval by other
organizations or parties.

For example, the internal QA organization could sign manifests of packages once it was determined the packages
were qualified for production use. Policy could mandate such approvals prior to installation.

As a result, a useful characteristic for signatures is to be independent of other signatures in a manifest. Signatures can
be added or removed without invalidating the other signatures that might be present. This feature also facilitates
production hand offs, with signatures used along the path to indicate completion along the way. Subsequent steps can
optionally remove previous signatures at any time without ill effect.

signature actions look like this:

signature <hash of certificate> algorithm=<signature algorithm> \
 value=<signature value> \
 chain="<hashes of certs needed to validate primary certificate>" \
 version=<pkg version of signature>

The payload and chain attributes represent the packaging hash of the PEM (Privacy Enhanced Mail) files,
containing the x.509 certificates downloadable from the originating repository. The value is the signed hash of the
manifest's message text, prepared as discussed below. The payload certificate is the certificate which verifies the
value in value.

The other certificates presented needs to form a certificate path that leads from the payload certificate to the trust
anchors that were established as part of the publisher configuration.

Two types of signature algorithms are currently supported. The first is the RSA group of signature algorithms; an
example is rsa-sha256. The bit after the dash specifies the hash algorithm to use to change the message text into a
single value the RSA algorithm can use.

The second type of signature algorithm is compute the hash only. This type of algorithm exists primarily for testing
and process verification purposes and presents the hash as the signature value. A signature action of this type is
indicated by the lack of a payload certificate hash. This type of signature action is verified if the image is configured
to check signatures. Its presence however does not count as a signature if signatures are required:

signature algorithm=<hash algorithm> value=<hash> \
 version=<pkg version of signature>

Additional metadata can be added to a signature if desired, as with any other action. Such metadata is protected by
that signature.

Chapter 11

59 Packaging and Delivering Software with the Image Packaging System

Policies can be set for the image or for specific publishers. The policies include ignoring signatures, verifying
existing signatures, requiring signatures, and requiring that specific common names must be seen in the chain of trust.
Other policies might be added in the future.

Publishing a signed manifest is a two step process:

1. Publish the package unsigned to a repository.

2. Update the package in place, using pkgsign(1) to append a signature action to the manifest in the
repository.

This process leaves the package intact, including its timestamp.

This process enables a signature action to be added by someone other than the publisher without invalidating the
original publisher's signature. For example, the QA department of a company might want to sign all packages that are
installed internally to indicate they have been approved for use, but not republish the packages, which would create a
new timestamp and invalidate the signature of the original publisher.

Note that pkgsign(1) is the only way to publish a signed package. If one attempts to publish a package already
containing a signature, that signature is removed and a warning is emitted. The pkgsign(1) man page contains
examples of how to use pkgsign(1).

One current restriction to be aware of is that signature actions with variants are ignored. That means that doing a
pkgmerge(1) on a pair of manifests will invalidate any signatures which were previously applied. Signing the
package should be the last step of the package development before the package is tested.

pkgsign(1) does not perform all the possible checks for its inputs when signing packages. This means it's
important to check signed packages to ensure that they can be properly installed after being signed. What follows are
some of the errors that can appear when attempting to install or update a signed package along with explanations of
what the errors mean and how to solve the problem.

Errors Involving Signed Packages
A signed package can fail to install or update for reasons that are unique to signed packages. For example, if a
package's signature fails to verify, or if its chain of trust can't be verified or anchored to a trusted certificate, the
package will fail to install.

When installing signed packages, certain image properties will influence the checks that are performed on packages.
These properties are:

• signature-policy

• signature-required-names

• trust-anchor-directory

See the pkg(1) man page for further information about these properties, and their permitted values.

What follows are some examples of different failure paths and what can be done to resolve them.

Example 1: Chain Certificate Not Found

pkg install: The certificate which issued this certificate:
/C=US/ST=California/L=Menlo Park/O=pkg5/CN=cs1_ch1_ta3/emailAddress=cs1_ch1_ta3
could not be found. The issuer is:
/C=US/ST=California/L=Menlo Park/O=pkg5/CN=ch1_ta3/emailAddress=ch1_ta3

The package involved is:pkg://test/example_pkg@1.0,5.11-0:20110919T184152Z

The error shown above happens when a certificate in the chain of trust is missing or otherwise erroneous.

Chapter 11

60

In this case, there were three certificates in the chain of trust when the package was signed. It was rooted in the trust
anchor, a certificate named ta3. ta3 signed a chain cert named ch1_ta3.

ch1_ta3 signed a code signing certificate named cs1_ch1_ta3. When pkg(1) tried to install the package, it
was able to locate the code signing certificate, cs1_ch1_ta3, but it couldn't locate the chain certificate, ch1_ta3,
so the chain of trust could not be established.

The most common cause of this problem is failing to provide the right certificate(s) to the -i option of
pkgsign(1).

Example 2: Authorized Certificate Not Found

pkg install: The certificate which issued this certificate:
/C=US/ST=California/L=Menlo Park/O=pkg5/CN=cs1_cs8_ch1_ta3/emailAddress=cs1_cs8_ch1_ta3
could not be found. The issuer is:
/C=US/ST=California/L=Menlo Park/O=pkg5/CN=cs8_ch1_ta3/emailAddress=cs8_ch1_ta3
The package involved is:pkg://test/example_pkg@1.0,5.11-0:20110919T201101Z

The error shown above is similar to the error in Example 1 but has a different cause.

In this case, the package was signed using the cs1_cs8_ch1_ta3 certificate, which was signed by the
cs8_ch1_ta3 certificate.

The problem is that the cs8_ch1_ta3 certificate wasn't authorized to sign other certificates. (To be specific, the
cs8_ch1_ta3 certificate had the basicConstraints extension set to CA:false and marked critical.)

When pkg(1) verifies the chain of trust, it doesn't find a certificate which was allowed to sign the
cs1_cs8_ch1_ta3 certificate. Since the chain of trust can't be verified from the leaf to the root, pkg(1) prevents
the package from being installed.

Example 3: Untrusted Self-Signed Certificate

pkg install: Chain was rooted in an untrusted self-signed certificate.
The package involved is:pkg://test/example_pkg@1.0,5.11-0:20110919T185335Z

The error shown above happens when a chain of trust ends in a self-signed certificate which isn't trusted by the
system.

When a developer creates a chain of certificates using openssl for testing, the root certificate is usually self-signed,
since there's little reason to have an outside company verify a certificate only used for testing.

In a test situation, there are two solutions.

The first is to add the self-signed certificate which is the root of the chain of trust into /etc/certs/CA and refresh
the system/ca-certificates service.

This mirrors the likely situation customers will encounter where a production package is signed with a certificate
that's ultimately rooted in a certificate that's delivered with the operating system as a trust anchor.

The second solution is to approve the self-signed certificate for the publisher which offers the package for testing by
using the --approve-ca-cert option for the set-publisher subcommand to pkg(1).

Chapter 11

61 Packaging and Delivering Software with the Image Packaging System

Example 4: Signature Value Does Not Match Expected Value

pkg install: A signature in pkg://test/example_pkg@1.0,5.11-0:20110919T195801Z
could not be verified for this reason:
The signature value did not match the expected value. Res: 0
The signature's hash is 0ce15c572961b7a0413b8390c90b7cac18ee9010

The error shown above happens when the value on the signature action could not be verified using the certificate
which the action claims was paired with the key used to sign the package.

There are two possible causes for an error like this.

The first is that the package has been changed since it was signed. This is unlikely to happen since pkgsend(1)
will strip existing signature actions during publication (since the new timestamp the package will get will invalidate
the old signature) but is possible if the package's manifest has been hand edited since signing.

The second, and most likely cause, is that the key and certificate used to the sign the package weren't a matched pair.
If the certificate given to the -c option of pkgsign(1) wasn't created with the key given to the -k option of
pkgsign(1), the package is signed, but its signature won't be verified.

Example 5: Unknown Critical Extension

pkg install: The certificate whose subject is
/C=US/ST=California/L=Menlo Park/O=pkg5/CN=cs2_ch1_ta3/emailAddress=cs2_ch1_ta3
could not be verified because it uses a critical extension that pkg5 cannot
handle yet. Extension name:issuerAltName
Extension value:<EMPTY>

The error above happens when a certificate in the chain of trust uses a critical extension which pkg(1) doesn't
understand.

Until pkg(1) learns how to process that critical extension, the only solution is to regenerate the certificate without
the problematic critical extension.

Example 6: Unknown Extension Value

pkg install: The certificate whose subject is
/C=US/ST=California/L=Menlo Park/O=pkg5/CN=cs5_ch1_ta3/emailAddress=cs5_ch1_ta3
could not be verified because it has an extension with a value that pkg(5)
does not understand.
Extension name:keyUsage
Extension value:Encipher Only

The error above is similar to the error in Example 5 except that the problem is not with an unfamiliar critical
extension but with a value that pkg(1) doesn't understand for an extension which pkg(1) does understand.

In this case, pkg(1) understands the keyUsage extension, but doesn't understand the value ‘Encipher Only.’
The error will look the same whether the extension in question is critical or not.

The solution, until pkg(1) learns about the value in question, is to remove the value from the extension, or remove
the extension entirely.

Chapter 11

62

Example 7: Unauthorized Use of Certificate

pkg install: The certificate whose subject is
/C=US/ST=California/L=Menlo Park/O=pkg5/CN=ch1_ta3/emailAddress=ch1_ta3
could not be verified because it has been used inappropriately.
The way it is used means that the value for extension keyUsage must include
'DIGITAL SIGNATURE' but the value was 'Certificate Sign, CRL Sign'.

The error above occurs when a certificate has been used for a purpose for which it was not authorized.

In this case, the certificate ch1_ta3 has been used to sign the package. It's keyUsage extension means that it's
only valid to use that certificate to sign other certificates and CRL's.

Example 8: Unexpected Hash Value

pkg install: Certificate
/tmp/ips.test.7149/0/image0/var/pkg/publisher/test/certs/0ce15c572961b7a0413b8390c90b7cac18ee9010
has been modified on disk. Its hash value is not what was expected.

The error above means what it says.

The certificate at the provided path is used to verify the package being installed but the hash of the contents on disk
don't match what the signature action thought they should be.

This indicates that the certificate has been changed since it was last retrieved from the publisher.

The simple solution is to remove the certificate and allow pkg(1) to download the certificate again.

Example 9: Revoked Certificate

pkg install: This certificate was revoked:
/C=US/ST=California/L=Menlo Park/O=pkg5/CN=cs1_ch1_ta4/emailAddress=cs1_ch1_ta4
for this reason: None
The package involved is: pkg://test/example_pkg@1.0,5.11-0:20110919T205539Z

The error above indicates the certificate in question, which was in the chain of trust for the package to be installed,
was revoked by the issuer of the certificate.

Chapter 11

63 Packaging and Delivering Software with the Image Packaging System

Chapter 12

Handling Non-Global Zones
This chapter describes how IPS handles zones and discusses those cases where package developers should be aware
of zones.

Packaging Considerations For Non-Global Zones
Developing packages which work consistently with zones usually involves little to no additional work. However, a
few situations call for close attention from developers. When considering zones and packaging there are two
questions which need to be answered:

• Does anything in my package have an interface which crosses the boundary between the global zone and
non-global zones?

• How much of the package should be installed in the non-global zone?

Does The Package Cross the Global, Non-Global Zone boundary?

If a package delivers both kernel and userland functionality, and both sides of that interface must be updated
accordingly, then the package must be updated in any zones that contain that package whenever the package in the
non-global zone gets updated.

This can be done using a parent dependency in the package being developed. If a single package delivers both
sides of the interface, then a parent dependency on feature/package/dependency/self will ensure that
the global zone and the non-global zones contain the same version of the package, preventing version skew across the
interface.

The dependency will also ensure that if the package is in a non-global zone, then it is also present in the global zone.

If the interface spans multiple packages, then the package containing the non-global zone side of the interface must
contain a parent dependency on the package which delivers the global zone side of the interface. The parent
dependency is also discussed in Chapter 6.

How Much of a Package Should Be Installed in a Non-Global Zone?

If the answer to this question is "all of it" (and that's typically the case) then nothing needs to be done to the package
to enable it to function properly.

For consumers of the package, though, it can be reassuring to see that the package author properly considered zone
installation and decided that this package can function in a zone.

For that reason, developers should explicitly state that their package functions in both global and non-global zones.
This is done by adding the following action to the manifest:

set name=variant.opensolaris.zone value=global value=nonglobal

If no content in the package can be installed in a non-global zone (for example a package which only delivers kernel
modules or drivers), then the package should specify that it cannot be installed in a zone. This is done by adding the
following action to the manifest:

set name=variant.opensolaris.zone value=global

If some but not all of the content in the package can be installed in a non-global zone, then take the following steps:

Chapter 12

64

#chapter-6

1. Use the following set action to state that the package can be installed in both global and non-global
zones:

set name=variant.opensolaris.zone value=global value=nonglobal

2. Identify the actions that are only relevant in either the global or non-global zone. The global-zone-only
actions should have the attribute variant.opensolaris.zone=global. Similarly, actions that
only apply in non-global zones should have the attribute
variant.opensolaris.zone=nonglobal.

If a package has a parent dependency or has pieces which are different in global and non-global zones, it's
important to test that the package works as expected in the non-global zone as well as the global zone. If the package
has a parent dependency on itself, then the global zone should configure the repository which delivers the package
as one of its origins. The package should be installed in the global zone first, and then in the non-global zone for
testing.

Troubleshooting Zones
Occasionally problems might be encountered when trying to install the package in the non-global zone.

Typically the first steps to take to attack the problem are to ensure that the following services are online in the global
zone:

• svc:/application/pkg/zones-proxyd:default

• svc:/application/pkg/system-repository:default

and that the following service is online in the non-global zone:

• svc:/application/pkg/zones-proxy-client:default

These three services provide publisher configuration to the non-global zone and a communication channel that the
non-global zone can use to make requests to the repositories assigned to the system publishers served from the global
zone.

Remember that you won't be able to update the package in the non-global zone, since it has a parent dependency
on itself. Initiating the update from the global zone and allowing the linked image code in pkg(1) to update the
non-global zone is the right solution.

Once the package is installed in the non-global zone, testing its functionality can begin.

If the package does not have a parent dependency on itself, then it's not necessary to configure the publisher in the
global zone nor install the package there. Further, updating the package in the global zone will not update it in the
non-global zone, causing potentially unexpected results when testing the older non-global zone package.

The simplest solution in this situation is to make the publisher available to the non-global zone and install and update
the package from within the zone.

If the zone cannot access the publisher's repositories, then configuring the publisher in the global zone will allow the
zones-proxy-client and system-repository services to proxy access to the publisher for the non-global
zone. In that case, it's still best to install and update the package in the non-global zone.

Chapter 12

65 Packaging and Delivering Software with the Image Packaging System

Chapter 13

How IPS Features Are Used when Packaging the OpenIndiana OS
This chapter describes how IPS is used to package OpenIndiana, and how the various dependency types are used to
define working package sets for the OS.

We include this chapter to give another concrete example of how IPS can be used to manage a complex set of
software, and talk about some of the IPS features that were used.

Versioning
In Chapter 3 we discussed the pkg.fmri attribute, and talked about the different components of the version field,
describing how the version field can be used to support different models of software development.

This section explains how OpenIndiana uses the version field, and is provided to give an insight into the reasons why
a fine-grained versioning scheme can be useful. Developers do not have to follow the same versioning scheme as
OpenIndiana.

Given a sample package:

pkg://openindiana.org/system/library@0.5.11,5.11-2018.0.0.18233:20190417T022656Z

This is how the version field 0.5.11,5.11-2018.0.0.18233:20190417T022656Z is broken down:

0.5.11

The component version. For packages that are provided by illumos-gate, this is the OS major.minor
version. For packages developed outside, this is the upstream version. For example, the Apache Web
Server in the package:

pkg:/web/server/apache-24@2.4.39,5.11-2018.0.0.0:20190406T083404Z

has the component version 2.4.39.

5.11

This is the build version. This is used to define the OS release that this package was built for and should
always be 5.11 for packages created for OpenIndiana.

2018.0.0.18233

This is the branch version. OpenIndiana uses the following notation for the branch version in this release:

• 2018: Major release number. Usually corresponds to the current year

• 0: Release minor number. Can be incremented on significant updates.

• 0: Update number. Usually incremented when a lot of components need rebuilding.

• 18233: Component revision, incremented for each component update. In this case it refers to
illumos-gate commit number.

20190417T022656Z

This is the timestamp, defined when the package was published.

Incorporations
OpenIndiana is delivered by a set of packages, with each group of packages constrained by an incorporation.

Chapter 13

66

#chapter-3

Each incorporation roughly represents the organization that developed each group of packages, though there are some
cross-incorporation dependencies within the packages themselves. The following is a list of the incorporation
packages in OpenIndiana:

• pkg:/consolidation/cde/cde-incorporation

• pkg:/consolidation/dbtg/dbtg-incorporation

• pkg:/consolidation/install/install-incorporation

• pkg:/consolidation/jdmk/jdmk-incorporation

• pkg:/consolidation/man/man-incorporation

• pkg:/consolidation/nspg/nspg-incorporation

• pkg:/consolidation/osnet/osnet-incorporation

• pkg:/consolidation/userland/userland-incorporation

• pkg:/consolidation/X/X-incorporation

Each of these incorporations includes:

• general package metadata

• incorporate dependencies, sometimes with variant.arch variants to denote dependencies that are
specific to a given architecture

• a license action that ensures that when the incorporation is installed, a license is displayed

Each of the packages delivered on the system contains a require dependency on one of these incorporations.

OpenIndiana also includes a special package called entire.

The entire constrains dependency on userland-incorporation.

facet.version-lock.*
Some of the incorporations, listed above use facet.version-lock.* facets, which were discussed in Chapter
6.

For example, looking at the pkg:/consolidation/userland/userland-incorporation package, we
see:

.

.
depend type=incorporate \
 fmri=library/python/subversion@1.9.7-2018.0.0.1 \
 depend facet.version-lock.library/python/subversion=true
depend type=incorporate \
 fmri=library/security/libassuan@2.1.3-2018.0.0.1 \
 facet.version-lock.library/security/libassuan=true
depend type=incorporate \
 fmri=network/chat/ircii@0.2011.11.15-2018.0.0.1 \
 facet.version-lock.network/chat/ircii=true
.
.
etc.

Chapter 13

67 Packaging and Delivering Software with the Image Packaging System

#chapter-6
#chapter-6

enabling the administrator to allow certain packages to float free from the constraints of the incorporation package.

Notably, the entire package also contains version-lock facet, allowing userland incorporation to be removed.
However, this can result in a system which is difficult to fix, and this package should only be unlocked on
development systems.

Chapter 13

68

Informational attributes
The following attributes are not necessary for correct package installation, but having a shared convention lowers
confusion between publishers and users.

info.classification

See Chapter 3 under "Set actions", and Appendix A.

info.keyword

A list of additional terms that should cause this package to be returned by a search.

info.maintainer

A human readable string describing the entity providing the package. For an individual, this string is
expected to be their name, or name and email.

info.maintainer-url

A URL associated with the entity providing the package.

info.upstream

A human readable string describing the entity that creates the software. For an individual, this string is
expected to be their name, or name and email.

info.upstream-url

A URL associated with the entity that creates the software delivered within the package.

info.source-url

A URL to the source code bundle, if appropriate, for the package.

info.repository-url

A URL to the source code repository, if appropriate, for the package.

info.repository-changeset

A changeset ID for the version of the source code contained in info.repository-url.

OpenIndiana Attributes

org.opensolaris.arc-caseid

One or more case identifiers (e.g., PSARC/2008/190) associated with the ARC case (Architecture Review
Committee) or cases associated with the component delivered by the package.

org.opensolaris.smf.fmri

One or more FMRIs representing SMF services delivered by this package. These attributes are
automatically generated by pkgdepend(1) for packages containing SMF service manifests.

OpenIndiana Tags

variant.opensolaris.zone

See Chapter 12

Organization Specific Attributes

Organizations wanting to provide a package with additional metadata or to amend an existing package's
metadata (in a repository that they have control over) must use an organization-specific prefix. For example, a
service organization might introduce service.example.com,support-level or
com.example.service,support-level to describe a level of support for a package and its contents.

Chapter 13

69 Packaging and Delivering Software with the Image Packaging System

#chapter-3
#appendix-a
#chapter-12

Chapter 14

Republishing Packages
This chapter describes how administrators can modify existing packages for local conditions.

Occasionally administrators need to override attributes or modify packages they did not produce. This might be to
replace a portion of the package with an internal implementation, or something as simple as removing binaries not
permitted on systems.

While other packaging systems provide various mechanisms to "force" installation, IPS focuses instead on making it
easy to republish an existing package with the desired modifications. This makes upgrade much easier since new
versions can be re-published with the same modifications. It also enables the rest of the packaging system to function
normally since instead of forcing IPS to ignore changes, packages reflect the correct, installed state of the system.

Of course, running a system with a republished package can cause issues with the support organization if any
connection is suspected between observed problems and the modified package.

The basic steps are as follows:

1. Use pkgrecv(1) to download the package to be re-published in a raw format to a specified directory.
All of the files are named by their hash value, and the manifest is named manifest. Remember to set
any required proxy configuration in the http_proxy environment variable.

2. Use pkgmogrify(1) to modify the manifest in the desired manner. Any timestamp from the internal
package FMRI should be removed to prevent confusion during publication as it is ignored.

If changes are significant, running the resulting package through pkglint(1), as shown in Chapter 4, is
a good idea.

3. Republish the package with pkgsend(1). Note that this republication will strip the package of any
signatures that are present and will ignore any timestamp specified by pkg.fmri. To prevent a warning
message you might want to remove signature actions in the pkgmogrify(1) step.

If the administrator doesn't have permission to publish to the original source of the package, they can
create a repository with pkgrepo(1), then use
pkg set-publisher --search-before=<original> to have the client look for packages
from the new repository before falling back to the original publisher.

4. Optionally, sign the package using pkgsign(1) so that internal processes can be followed. Packages
should be signed before they are installed (even during testing) to prevent client caching issues.

Chapter 14

70

#chapter-4

Example 1: Change Package Metadata
Here's a simple example, where we change the pkg.summary field to be ‘"IPS has lots of features"’ instead of
whatever was there originally, and republish to our new repository:

$ mkdir republish; cd republish
$ pkgrecv -d . --raw -s http://openindiana.org/hipster/ package/pkg
$ cd package* # package name contains a '/', and is url-encoded.
$ cd * # we pulled down just the latest package by default
$ cat > fix-pkg
change value of pkg.summary
<transform set name=pkg.summary -> edit value '.*' "IPS has lots of features">
delete any signature actions
<transform signature -> drop>
remove timestamp from fmri so we get our own
<transform set name=pkg.fmri -> edit value ":20.+" "">
^D
$ pkgmogrify manifest fix-pkg > new-manifest
$ pkgrepo create ./mypkg
$ pkgsend -s ./mypkg publish -d . new-manifest

Example 2: Change Package Publisher
Another common use case is to republish packages under a new publisher name.

This can be useful, for example, when consolidating the packages from several different development teams'
repositories into a single repository for integration testing.

Again, this can be achieved using the steps in Example 1, using pkgrecv --raw, running a pkgmogrify(1)
transform on the resulting manifest, then republishing the transformed manifest.

A sample transform to change the publisher to "mypublisher" is:

<transform set name=pkg.fmri -> edit value pkg://[^/]+/ pkg://mypublisher/>

Iterating over all packages in the repository can be done with a simple shell script, that uses the output from
pkgrecv --newest to process only the newest packages from the repository.

In the script below, we've saved the transform above in a file called change-pub.mog, and want to in republish
from development-repo to a new repository mypublisher, changing the package publisher along the way:

#!/usr/bin/ksh93
pkgrepo create mypublisher
pkgrepo -s mypublisher set publisher/prefix=mypublisher
mkdir incoming
for package in $(pkgrecv -s ./development-repo --newest); do
 pkgrecv -s development-repo -d incoming --raw $package
done

for pdir in incoming/*/* ; do
 pkgmogrify $pdir/manifest change-pub.mog > $pdir/manifest.newpub
 pkgsend -s mypublisher publish -d $pdir $pdir/manifest.newpub
done

Chapter 14

71 Packaging and Delivering Software with the Image Packaging System

If necessary, we could modify this script to select only certain packages, make additional changes to the versioning
scheme of the packages, and show progress as it republishes each package, for example.

Chapter 14

72

Appendix A

Classifying Packages
The following are defined values for the package attribute info.classification with scheme
org.opensolaris.category.2008, used by the Package Manager GUI to display possible packages. A
typical entry as used in a package manifest might be:

set name=info.classification value=\
 "org.opensolaris.category.2008:System/Administration and Configuration"

Note that category and subcategory are separated by a "/". As usual, spaces in the attribute value require quoting.

Defined categories and subcategories for values are:

Meta Packages

• Builds

• Releases

• Developer Tools

• AMP Stack

• Office Tools

Applications

• Accessories

• Configuration and Preferences

• Games

• Graphics and Imaging

• Internet

• Office

• Panels and Applets

• Plug-ins and Run-times

• Sound and Video

• System Utilities

• Universal Access

Desktop (GNOME)

Appendix A

73 Packaging and Delivering Software with the Image Packaging System

• Documentation

• File Managers

• Libraries

• Localizations

• Scripts

• Sessions

• Theming

• Trusted Extensions

• Window Managers

Development

• C

• C++

• Databases

• Distribution Tools

• Editors

• Fortran

• GNOME and GTK+

• GNU

• High Performance Computing

• Integrated Development Environments

• Java

• Objective C

• Observability

• Other Languages

• PHP

• Perl

• Python

• Ruby

• Source Code Management

• Suites

• System

• X11

Drivers

• Display

• Media

Appendix A

74

• Networking

• Other Peripherals

• Ports

• Storage

System

• Administration and Configuration

• Core

• Databases

• Enterprise Management

• File System

• Fonts

• Hardware

• Internationalization

• Libraries

• Localizations

• Media

• Multimedia Libraries

• Packaging

• Printing

• Security

• Services

• Shells

• Software Management

• Text Tools

• Trusted

• Virtualization

• X11

Web Services

• Application and Web Servers

• Communications

Appendix A

75 Packaging and Delivering Software with the Image Packaging System

Appendix B

Converting SVR4 Packages to IPS
This appendix covers conversion of packages from SVR4 to IPS and highlights some aspects of the conversion that
should be given special attention.

Chapter 4 goes into detail on how to package software in IPS. Developers with build environments that currently
produce SVR4 packages should convert their build processes following the example in that chapter, rather than
continuing to build SVR4 packages then converting those packages to IPS.

As with Chapter 4, the fundamental steps to packaging any software in IPS are:

• Generate a package manifest.

• Add necessary metadata to the generated manifest.

• Evaluate dependencies.

• Add any facets or actuators that are needed.

• Check the package with pkglint(1).

• Publish the package.

• Test the package.

These steps remain essentially the same for SVR4 to IPS conversion and we will not repeat their explanations. There
are a few steps that warrant more detailed explanations, and which are covered in this appendix.

In this appendix, a sample SVR4 package which is similar to the IPS package created in Chapter 4 is used.

Generate a Package Manifest
pkgsend generate has support for scanning several different sources in order to generate manifests. In Chapter
4, we used a simple directory as the source. The pkgsend(1) utility can also read SVR4 packages, consulting the
pkgmap(4) file in that package, rather than the directory inside the package that contains the files delivered.

While scanning the prototype file, pkgsend(1) also looks for entries that could cause problems when
converting the package to IPS. The pkgsend(1) utility reports those problems and prints the generated manifest.

In this example, a SVR4 package will be used that has a pkginfo file:

VENDOR=My Software Inc.
HOTLINE=Please contact your local service provider
PKG=MSFTmypkg
ARCH=i386
DESC=A sample SVR4 package of My Sample Package
CATEGORY=system
NAME=My Sample Package
BASEDIR=/
VERSION=11.11,REV=2011.10.17.14.08
CLASSES=none manpage
PSTAMP=linn20111017132525
MSFT_DATA=Some extra package metadata

Appendix B

76

#chapter-4
#chapter-4
#chapter-4
#chapter-4
#chapter-4

and a corresponding prototype file:

i pkginfo
i copyright
i postinstall
d none opt 0755 root bin
d none opt/mysoftware 0755 root bin
d none opt/mysoftware/lib 0755 root bin
f none opt/mysoftware/lib/mylib.so.1 0644 root bin
d none opt/mysoftware/bin 0755 root bin
f none opt/mysoftware/bin/mycmd 0755 root bin
d none opt/mysoftware/man 0755 root bin
d none opt/mysoftware/man/man1 0755 root bin
f none opt/mysoftware/man/man1/mycmd.1 0644 root bin

Running pkgsend(1) on the SVR4 package built using these files, the following IPS manifest is generated:

$ pkgsend generate ./MSFTmypkg | pkgfmt
pkgsend generate: ERROR: script present in MSFTmypkg: postinstall

set name=pkg.summary value="My Sample Package"
set name=pkg.description value="A sample SVR4 package of My Sample Package"
set name=pkg.send.convert.msft-data value="Some extra package metadata"
dir path=opt owner=root group=bin mode=0755
dir path=opt/mysoftware owner=root group=bin mode=0755
dir path=opt/mysoftware/bin owner=root group=bin mode=0755
file reloc/opt/mysoftware/bin/mycmd path=opt/mysoftware/bin/mycmd owner=root \
 group=bin mode=0755
dir path=opt/mysoftware/lib owner=root group=bin mode=0755
file reloc/opt/mysoftware/lib/mylib.so.1 path=opt/mysoftware/lib/mylib.so.1 \
 owner=root group=bin mode=0644
dir path=opt/mysoftware/man owner=root group=bin mode=0755
dir path=opt/mysoftware/man/man1 owner=root group=bin mode=0755
file reloc/opt/mysoftware/man/man1/mycmd.1 \
 path=opt/mysoftware/man/man1/mycmd.1 owner=root group=bin mode=0644
legacy pkg=MSFTmypkg arch=i386 category=system \
 desc="A sample SVR4 package of My Sample Package" \
 hotline="Please contact your local service provider" \
 name="My Sample Package" vendor="My Software Inc." \
 version=11.11,REV=2011.10.17.14.08
license install/copyright license=MSFTmypkg.copyright

There are several points to note in the output above:

Appendix B

77 Packaging and Delivering Software with the Image Packaging System

• The pkg.summary and pkg.description attributes were automatically created, using the data from
the pkginfo file.

• A set action was generated from the extra parameter in pkginfo file. These are set beneath the
pkg.send.convert.* namespace, with the intention that developers will use pkgmogrify(1)
transforms to convert these to a more appropriate attribute name.

• A legacy action was generated, using data from the SVR4 pkginfo file.

• A license action was generated, pointing to the copyright file used in the SVR4 package.

• An error message was emitted pointing to a scripting operation that can't be converted.

Checking again, we can see a non-zero return code from pkgsend generate, and the error message again:

$ pkgsend generate MSFTmypkg > /dev/null
pkgsend generate: ERROR: script present in MSFTmypkg: postinstall
$ echo $?
1

In this case, the package is using a postinstall script that can't be converted directly to an IPS equivalent. The
script must be manually inspected.

This is the postinstall script in the package:

#!/usr/bin/sh
catman -M /opt/mysoftware/man

Its effects can easily be replaced by using a restart_fmri actuator pointing to an existing SMF service,
svc:/application/man-index:default as described in Chapter 4. Also, see Chapter 9 for further
discussion of actuators.

pkgsend generate will also check for the presence of class-action scripts and will produce error messages
indicating which scripts should be examined.

It is impossible to give examples for every package scripting scenario that a developer can encounter when
converting SVR4 packages to IPS packages. In IPS, the needed functionality probably can be implemented by using
an existing action type or SMF service.

See Chapter 3 for details about the action types available, and Chapter 9 for a discussion on actuators.

Appendix B

78

#chapter-4
#chapter-9
#chapter-3
#chapter-9

Verify the Package
We'll assume that any additional package metadata needed has been added to the manifest, and that dependency
generation and resolution has been performed as per Chapter 4. Our next step is running pkglint(1) on the
package.

A common source of errors when converting old SVR4 packages is mismatched attributes between directories
delivered in the SVR4 package and those delivered by other packages on the system.

In this case, the directory action for /opt in the sample manifest has different attributes than those defined by the
system packages.

Recall that in Chapter 3, we discussed the directory action, stating that all reference-counted actions must have the
same attributes. When trying to install the version of mypkg that has been generated so far, an error will occur:

pkg install mypkg
Creating Plan /
pkg install: The requested change to the system attempts to install multiple actions
for dir 'opt' with conflicting attributes:

 1 package delivers 'dir group=bin mode=0755 owner=root path=opt':
 pkg://mypublisher/mypkg@1.0,5.11-0:20111017T020042Z
 2 packages deliver 'dir group=sys mode=0755 owner=root path=opt':
 pkg://openindiana.org/developer/build/onbld@0.5.11,5.11-2018.0.0.18233:20190417T014131Z
 pkg://openindiana.org/SUNWcs@0.5.11,5.11-2018.0.0.18233:20190417T022040Z

These packages may not be installed together. Any non-conflicting set may
be, or the packages must be corrected before they can be installed.

To catch the error before publishing the package, rather than at install-time, pkglint(1) can be used with a
reference repository:

$ pkglint -c ./cache -r file:///scratch/oi-repo ./mypkg.mf.res
Lint engine setup...

PHASE ITEMS
4 4292/4292
Starting lint run...

WARNING opensolaris.manifest001.1 Missing attribute 'org.opensolaris.consolidation' in pkg:/mypkg@1.0,5.11
ERROR pkglint.dupaction007 path opt is reference-counted but has different attributes across 3
duplicates: group: bin -> mypkg group: sys -> developer/build/onbld SUNWcs

In particular, notice the error message it produces about /opt having incorrect attributes. The extra ldomsmanager
package that pkglint(1) reports was in the reference package repository, but was not installed on the test system,
so it did not show up in the errors reported previously by pkg install.

Other Considerations
While it is possible to install SVR4 packages directly on a system running IPS, we strongly recommend against this.

Apart from the legacy action, described in Chapter 3, there are no links between the two packaging systems, and
they do not reference package metadata from each other.

IPS has commands such as pkg verify which can determine whether packaged content has been installed
correctly. However if another packaging system legitimately installs packages, or runs install scripts that modify
packaged files from IPS, errors might result.

Commands such as pkg fix or pkg revert could overwrite files that were delivered by a SVR4 package as well
as an IPS package, potentially causing the packaged applications to malfunction.

Appendix B

79 Packaging and Delivering Software with the Image Packaging System

#chapter-4
#chapter-3
#chapter-3

Similarly, commands such as pkg install, which normally check for duplicate actions and common attributes on
reference-counted actions, could also fail to detect potential errors when files from a different packaging system
conflict.

With these pitfalls in mind, and given the comprehensive package development tool chain in IPS, developing IPS
packages instead of SVR4 packages is recommended for OpenIndiana.

Appendix B

80

	Preface
	How this book is organized
	Chapter 1
	Design Goals and Concepts
	Software Self-Assembly
	Designing Your Package
	Naming Your Package
	Optimize for Client-Server Configurations
	Package by Functional Boundaries
	Package Along License or Royalty Boundaries
	Overlap in Packages
	Sizing Considerations

	Chapter 2
	Package Lifecycle
	Creation
	Publication
	Installation
	Updates
	Renaming
	Obsoletion
	Removal

	Chapter 3
	Basic Terminology
	Image
	Package
	Version

	Publisher
	Action
	Types of Actions
	File Actions
	Directory Actions
	Link Actions
	Hardlink Actions
	Set Actions
	Driver Actions
	Depend Actions
	License Actions
	Legacy Actions
	Signature Actions
	User Actions
	Group Actions

	Repository

	Chapter 4
	Packaging Software with IPS
	Generate a Package Manifest
	Add Necessary Metadata to the Generated Manifest
	Evaluate Dependencies
	Add Any Facets or Actuators That Are Needed
	Verify the Package
	Publish the Package
	Local File Repositories
	Package Archives

	Test the Package

	Chapter 5
	Installing, Removing, and Updating Software Packages
	How package changes are performed
	Check Input for Errors
	Determine the System End State
	Run Basic Checks
	Run the Solver
	Optimize the Solver Results
	Evaluate Actions
	Download Content
	Execute Actions
	Process Actuators

	Chapter 6
	Specifying Dependencies
	Dependency Types
	require
	require-any
	optional
	conditional
	group
	origin
	parent
	incorporate
	exclude

	Constraints and Freezing
	Constraints
	Freezing

	Chapter 7
	Allowing Variations
	Variants
	Facets

	Chapter 8
	Modifying Package Manifests Programmatically
	Transform Rules
	Include Rules
	Transform Order
	Packaged Transforms

	Chapter 9
	Causing System Change With SMF
	Actuators
	reboot-needed
	SMF Actuators

	Delivering an SMF Service
	A Service That Runs Once
	Self-Assembly Hints
	Timestamps
	Timeouts

	Chapter 10
	Advanced Update
	Renaming, Merging and Splitting Packages
	Renaming a Single Package
	Merging Two Packages
	One Package Absorbs Another
	Two Packages Are Renamed

	Splitting a Package

	Obsoleting Packages
	Preserving Editable Files During Package Renaming or Path Changes
	Moving Unpackaged Contents on Directory Removal or Rename
	Delivering Multiple Implementations of a Given Application
	Delivering Directories To Be Shared Across Boot Environments

	Chapter 11
	Signing Packages
	Errors Involving Signed Packages
	Example 1: Chain Certificate Not Found
	Example 2: Authorized Certificate Not Found
	Example 3: Untrusted Self-Signed Certificate
	Example 4: Signature Value Does Not Match Expected Value
	Example 5: Unknown Critical Extension
	Example 6: Unknown Extension Value
	Example 7: Unauthorized Use of Certificate
	Example 8: Unexpected Hash Value
	Example 9: Revoked Certificate

	Chapter 12
	Handling Non-Global Zones
	Packaging Considerations For Non-Global Zones
	Does The Package Cross the Global, Non-Global Zone boundary?
	How Much of a Package Should Be Installed in a Non-Global Zone?

	Troubleshooting Zones

	Chapter 13
	How IPS Features Are Used when Packaging the OpenIndiana OS
	Versioning
	Incorporations
	facet.version-lock.*
	Informational attributes
	OpenIndiana Attributes
	OpenIndiana Tags
	Organization Specific Attributes

	Chapter 14
	Republishing Packages
	Example 1: Change Package Metadata
	Example 2: Change Package Publisher

	Appendix A
	Classifying Packages

	Appendix B
	Converting SVR4 Packages to IPS
	Generate a Package Manifest
	Verify the Package
	Other Considerations

